Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 13(639)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636307

RESUMEN

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.


Asunto(s)
Proteína Morfogenética Ósea 1/metabolismo , Proteolisis , Trombospondina 1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteína Morfogenética Ósea 1/genética , Adhesión Celular , Línea Celular Tumoral , Humanos , Trombospondina 1/genética , Factor de Crecimiento Transformador beta/genética , Xenopus laevis
2.
Nat Commun ; 10(1): 2693, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217419

RESUMEN

The kinesin-3 KIF1C is a fast organelle transporter implicated in the transport of dense core vesicles in neurons and the delivery of integrins to cell adhesions. Here we report the mechanisms of autoinhibition and release that control the activity of KIF1C. We show that the microtubule binding surface of KIF1C motor domain interacts with its stalk and that these autoinhibitory interactions are released upon binding of protein tyrosine phosphatase PTPN21. The FERM domain of PTPN21 stimulates dense core vesicle transport in primary hippocampal neurons and rescues integrin trafficking in KIF1C-depleted cells. In vitro, human full-length KIF1C is a processive, plus-end directed motor. Its landing rate onto microtubules increases in the presence of either PTPN21 FERM domain or the cargo adapter Hook3 that binds the same region of KIF1C tail. This autoinhibition release mechanism allows cargo-activated transport and might enable motors to participate in bidirectional cargo transport without undertaking a tug-of-war.


Asunto(s)
Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Animales , Transporte Biológico , Línea Celular , Vesículas Citoplasmáticas/metabolismo , Hipocampo/citología , Humanos , Integrinas/metabolismo , Microscopía Intravital/métodos , Cinesinas/genética , Cinesinas/aislamiento & purificación , Ratones , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Microtúbulos/metabolismo , Neuronas/citología , Cultivo Primario de Células , Unión Proteica , Dominios Proteicos , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/aislamiento & purificación , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula/métodos
3.
Biochem Soc Trans ; 43(1): 79-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25619249

RESUMEN

Human cells express 45 kinesins, microtubule motors that transport a variety of molecules and organelles within the cell. Many kinesins also modulate the tracks they move on by either bundling or sliding or regulating the dynamic assembly and disassembly of the microtubule polymer. In migrating cells, microtubules control the asymmetry between the front and rear of the cell by differentially regulating force generation processes and substrate adhesion. Many of these functions are mediated by kinesins, transporters as well as track modulators. In this review, we summarize the current knowledge on kinesin functions in cell migration.


Asunto(s)
Movimiento Celular , Cinesinas/fisiología , Adhesión Celular , Humanos , Cinesinas/química , Microtúbulos/fisiología , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 111(42): 15108-13, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288732

RESUMEN

Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Receptores de Estrógenos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Animales , Línea Celular Tumoral , Proteínas Cullin/metabolismo , Matriz Extracelular/metabolismo , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas/metabolismo , Cicatrización de Heridas , Receptor Relacionado con Estrógeno ERRalfa
5.
J Cell Sci ; 127(Pt 24): 5179-88, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25344256

RESUMEN

The kinesin KIF1C is known to regulate podosomes, actin-rich adhesion structures that remodel the extracellular matrix during physiological processes. Here, we show that KIF1C is a player in the podosome-inducing signaling cascade. Upon induction of podosome formation by protein kinase C (PKC), KIF1C translocation to the cell periphery intensifies and KIF1C accumulates both in the proximity of peripheral microtubules that show enrichment for the plus-tip-associated proteins CLASPs and around podosomes. Importantly, without CLASPs, both KIF1C trafficking and podosome formation are suppressed. Moreover, chimeric mitochondrially targeted CLASP2 recruits KIF1C, suggesting a transient CLASP-KIF1C association. We propose that CLASPs create preferred microtubule tracks for KIF1C to promote podosome induction downstream of PKC.


Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Línea Celular , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA