Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 347: 119146, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852027

RESUMEN

The livestock industry accounts for a considerable proportion of agricultural greenhouse gas emissions, and in response, the Australian red meat industry has committed to an aspirational target of net-zero emissions by 2030. Increasing soil carbon storage in grazing lands has been identified as one method to help achieve this, while also potentially improving production and provision of other ecosystem services. This review examined the effects of grazing management on soil carbon and factors that drive soil carbon sequestration in Australia. A systematic literature search and meta-analysis was used to compare effects of stocking intensity (stocking rate or utilisation) and stocking method (i.e, continuous, rotational or seasonal grazing systems) on soil organic carbon, pasture herbage mass, plant growth and ground cover. Impacts on below ground biomass, soil nitrogen and soil structure are also discussed. Overall, no significant impact of stocking intensity or method on soil carbon sequestration in Australia was found, although lower stocking intensity and incorporating periods of rest into grazing systems (rotational grazing) had positive effects on herbage mass and ground cover compared with higher stocking intensity or continuous grazing. Minimal impact of grazing management on pasture growth rate and below-ground biomass has been reported in Australia. However, these factors improved with grazing intensity or rotational grazing in some circumstances. While there is a lack of evidence in Australia that grazing management directly increases soil carbon, this meta-analysis indicated that grazing management practices have potential to benefit the drivers of soil carbon sequestration by increasing above and below-ground plant production, maintaining a higher residual biomass, and promoting productive perennial pasture species. Specific recommendations for future research and management are provided in the paper.


Asunto(s)
Ecosistema , Suelo , Australia , Biomasa , Carbono/análisis , Suelo/química
2.
Glob Chang Biol ; 27(22): 5726-5761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314548

RESUMEN

Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been-somewhat myopically-on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co-benefits and trade-offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low- and middle-income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple-bottom line benefit with medium-high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co-benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems-based, multi-metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems-aligned 'socio-economic planetary boundaries' offer useful starting points that may uncover leverage points and cross-scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.


Asunto(s)
Gases de Efecto Invernadero , Miopía , Animales , Carbono , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Ganado
3.
J Environ Manage ; 261: 110192, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148267

RESUMEN

Understanding the drivers of soil organic carbon (SOC) change over time and confidence to predict changes in SOC are essential to the development and long-term viability of SOC trading schemes. This study investigated temporal changes in total SOC, total nitrogen (N), and carbon (C) fractions (particulate organic carbon - POC, resistant organic carbon - ROC and humus organic carbon - HOC) over a 16-year period for four contrasting farming systems in a low rainfall environment (424 mm) at Condobolin, Australia. The farming systems were 1) conventional tillage mixed farming (CT); 2) reduced tillage mixed farming (RT); 3) continuous cropping (CC); and 4) perennial pasture (PP). The SOC dynamics were also modelled using APSIM C and N modules, to determine the accuracy of this model. Results are presented in the context of land managers participating in Australian climate change mitigation schemes. There was an increase in SOC for all farming systems over the first 12 years (total organic C, TOC% at 0-10 cm increased from 1.33% to 1.77%), which was predominately in the POC% fraction (POC% at 0-10 cm increased from 0.14% to 0.5%). Between 2012 and 2015, there was a decrease in SOC back to starting levels (TOC = 1.22% POC = 0.12% at 0-10 cm) in all systems. The PP system had higher TOC%, POC% and HOC% levels on average and higher SOC stocks to 30 cm depth at the final measurement in 2015 (PP = 30.43 t C ha-1; cropping systems = 23.71 t C ha-1), compared to the other farming systems. There was a decrease in TN% over time in all farming systems except PP. The average C:N increased from 14.1 in 1999 to 19.7 in 2012, after which time the SOC levels decreased and C:N dropped back to 15.8. The temporal change in SOC was not able to be represented by the AusFarm model. There are three important conclusions for policy development: 1) monitoring temporal changes in SOC over 12 years did not indicate long-term sequestration, required to assure "permanence" in SOC trading (i.e. 25-100 years) due to the susceptibility of POC to degradation; 2) without monitoring SOC in reference land uses (e.g. CT cropping system as a control in this experiment) it is not possible to determine the net carbon sequestration, and therefore the true climate change mitigation value; and 3) modelling SOC using AusFarm/APSIM, does not fully represent the temporal dynamics of SOC in this low rainfall environment.


Asunto(s)
Carbono , Suelo , Agricultura , Australia , Secuestro de Carbono , Productos Agrícolas
4.
BMC Genet ; 20(1): 54, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31272371

RESUMEN

BACKGROUND: Overgrazing is a major factor that causes steppe degradation in Inner Mongolian, resulting in extensive ecosystem damage. Scarcity of grass means sheep are smaller and therefore mutton and cashmere production is greatly reduced, which has resulted in massive annual economic losses. Liver is the primary metabolic organ in mammals. It is also the key source of energy supply and detoxification of metabolites in animals, has a close relationship with animal growth. However, investigations on the responses of sheep induced by consequence of overgrazing, particularly those relating to liver-related molecular mechanisms and related metabolic pathways, remain elusive. RESULTS: The body weight daily gain of sheep, immune organ indices (liver and spleen), and serum parameters related to immune response, protein synthesis and energy supply (IgG, albumin, glucose and non-esterified fatty acid) were significantly lower in the overgrazing group. Other serum parameters including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, blood urea nitrogen and interleukin-6 were significantly higher in the overgrazing group. For the RNA-Seq results, we identified approximately 50 differentially expressed genes, of which half of were up-regulated and the other half were down-regulated (overgrazing group versus light grazing group). Bioinformatics analysis identified two enriched KEGG pathways including peroxisome proliferator-activated receptor (PPAR) signaling pathway (related to lipolysis) and ECM-receptor interaction (related to liver injury and apoptosis). Additionally, several of the down-regulated genes were related to detoxification and immune response. CONCLUSIONS: Overall, based on the high-throughput RNA sequencing profile integrated with the results of serum biochemical analyses, consequences of lower forage availability and quality under overgrazing condition induced altered expression levels of genes participating in energy metabolism (particularly lipid metabolism) and detoxification and immune responses, causing lipolysis and impaired health status, which might be key reasons for the reduced growth performance of sheep. This investigation provides a novel foundation for the development of sheep hepatic gene interactive networks that are a response to the degraded forage availability under overgrazing condition.


Asunto(s)
Herbivoria , Hígado/metabolismo , Ovinos/genética , Transcriptoma , Animales , Biomarcadores , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes y Vías Metabólicas , Ovinos/metabolismo , Transducción de Señal
5.
Asian-Australas J Anim Sci ; 32(10): 1630-1639, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31010990

RESUMEN

Objective: Sixty Pengbo semi-wool sheep ewes (approximately 1.5-years-old; 31.33 ± 0.43 kg) were randomly assigned to two groups, either G (grazing) or D (dry lot feeding), to examine the effects of traditional daily grazing and dry lot feeding on performance and blood metabolites during the cold season in Tibetan Plateau. Methods: The ewes in the G group were grazed continuously each day and housed in one shed each evening, while the ewes in the D group were housed in another shed all day. All animals were fed 400 g/day of commercial concentrate, and grass hay was available freely throughout the experimental period. Results: Compared with the G group, the ewes in the D group had higher (p < 0.05) live weight and weight gain. The D group ewes had greater (p < 0.05) numbers of white blood cells and platelets, while they had lower (p < 0.05) platelet-large cell ratios, cholesterol, high-density lipoprotein cholesterol and glutathione peroxidase, as compared with the G group ewes. Additionally, three serum metabolites, abscisic acid, xanthoxin and 3,4-dihydroxy-5-polypren, were upregulated (p < 0.05) in the D group in comparison with the G group. Conclusion: In conclusion, a dry lot feeding regime during the winter and spring period will increase the productivity of sheep and improve blood physiological and biochemical profiles.

7.
Proteome Sci ; 15: 2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28149202

RESUMEN

BACKGROUND: The degradation of the steppe of Inner Mongolia, due to overgrazing, has resulted in ecosystem damage as well as extensive reductions in sheep production. The growth performance of sheep is greatly reduced because of overgrazing, which triggers massive economic losses every year. The liver is an essential organ that has very important roles in multiple functions, such as nutrient metabolism, immunity and others, which are closely related to animal growth. However, to our knowledge, no detailed studies have evaluated hepatic metabolism adaption in sheep due to overgrazing. The molecular mechanisms that underlie these effects remain unclear. METHODS: In the present study, our group applied isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to investigate changes in the protein profiles of sheep hepatic tissues when nutrition was reduced due to overgrazing (12.0 sheep/ha), with the goal of characterizing the molecular mechanisms of hepatic metabolism adaption in sheep in an overgrazing condition. RESULTS: The body weight daily gain of sheep was greatly decreased due to overgrazing. Overall, 41 proteins were found to be differentially abundant in the hepatic tissue between a light grazing group and an overgrazing group. Most of the differentially expressed proteins identified are involved in protein metabolism, transcriptional and translational regulation, and immune response. In particular, the altered abundance of kynureninase (KYNU) and HAL (histidine ammonia-lyase) involved in protein metabolic function, integrated with the changes of serum levels of blood urea nitrogen (BUN) and glucose (GLU), suggest that overgrazing triggers a shift in energy resources from carbohydrates to proteins, causing poorer nitrogen utilization efficiency. Altogether, these results suggest that the reductions in animal growth induced by overgrazing are associated with liver proteomic changes, especially the proteins involved in nitrogen compounds metabolism and immunity. CONCLUSIONS: This provides new information that can be used for nutritional supplementation to improve the growth performance of sheep in an overgrazing condition.

8.
Sci Rep ; 5: 17866, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26639009

RESUMEN

Australia's "Direct Action" climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture will limit changes in SOC stocks. This work analyses data from 1482 sites surveyed across the major agricultural regions of Eastern Australia to determine the relative importance of land use vs. other drivers of SOC. Variation in land use explained only 1.4% of the total variation in SOC, with aridity and soil texture the main regulators of SOC stock under different land uses. Results suggest the greatest potential for increasing SOC stocks in Eastern Australian agricultural regions lies in converting from cropping to pasture on heavy textured soils in the humid regions.

9.
Sci Rep ; 5: 16434, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26553566

RESUMEN

Degradation by overgrazing is common in many areas of the world and optimising grassland functions depends upon finding suitable grazing tactics. This four-year study on the northern China steppe investigated combinations of rest, moderate or heavy grazing pressure early in the summer growing season, then moderate or heavy grazing in the mid and late season. Results showed that moderate grazing pressure (~550 sheep equivalent (SE) grazing days ha(-1) year(-1)) gave the optimal balance between maintaining a productive and diverse grassland, a profitable livestock system, and greenhouse gas mitigation. Further analyses identified that more conservative stocking (~400 SE grazing days ha(-1) year(-1)) maintained a desirable Leymus chinensis composition and achieved a higher live weight gain of sheep. Early summer rest best maintained a desirable grassland composition, but had few other benefits and reduced incomes. These findings demonstrate that reducing grazing pressure to half the current district stocking rates can deliver improved ecosystem services (lower greenhouse gases and improved grassland composition) while sustaining herder incomes.


Asunto(s)
Ecosistema , Pradera , Herbivoria , Animales , China , Ambiente , Modelos Teóricos , Reproducción
10.
PLoS One ; 10(10): e0141055, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26506228

RESUMEN

Understanding the mechanism of plant morphological plasticity in response to grazing and clipping of semiarid grassland can provide insight into the process of disturbance-induced decline in grassland productivity. In recent studies there has been controversy regarding two hypotheses: 1) grazing avoidance; and 2) growth limiting mechanisms of morphological plasticity in response to defoliation. However, the experimental evidence presented for the memory response to grazing and clipping of plants has been poorly reported. This paper reports on two experiments that tested these hypotheses in field and in a controlled environment, respectively. We examined the effects of long-term clipping and grazing on the functional traits and their plasticity for Leymus chinensis (Trin.) Tzvelev (the dominate species) in the typical-steppe grassland of Inner Mongolia, China. There were four main findings from these experiments. (i) The majority of phenotypic traits of L. chinensis tended to significantly miniaturize in response to long-term field clipping and grazing. (ii) The significant response of morphological plasticity with and without grazing was maintained in a hydroponic experiment designed to remove environmental variability, but there was no significant difference in L. chinensis individual size traits for the clipping comparison. (iii) Plasticity indexes of L. chinensis traits in a controlled environment were significantly lower than under field conditions indicating that plants had partial and slight memory effect to long-term grazing. (iv) The allometry of various phenotypic traits, indicated significant trade-offs between leaf and stem allocation with variations in plant size induced by defoliation, which were maintained only under grazing in the hydroponic controlled environment experiment. Taken together, our findings suggest that the morphological plasticity of L. chinensis induced by artificial clipping was different with that by livestock grazing. The miniaturization of plant size in long-term grazed grassland may reflect retained characteristics of dwarf memory for adaptation to long-term grazing by large herbivores.


Asunto(s)
Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Animales , China , Ambiente Controlado , Herbivoria/fisiología , Rizoma/crecimiento & desarrollo
11.
Sci Rep ; 5: 10892, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26137980

RESUMEN

Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.


Asunto(s)
Compuestos Inorgánicos de Carbono/química , Suelo/química , Agricultura/métodos , Animales , China , Conservación de los Recursos Naturales , Herbivoria , Compuestos de Nitrógeno/química , Oveja Doméstica/fisiología , Microbiología del Suelo
12.
Ann Bot ; 96(5): 799-809, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16046460

RESUMEN

BACKGROUND: and Aims Nassella trichotoma is an unpalatable perennial grass weed that invades disturbed native grasslands in temperate regions of south-eastern Australia. This experiment investigated whether elevated N levels, often associated with disturbance, increases the competitiveness of N. trichotoma relative to C3 and C4 native Australian grasses. METHODS: A pot experiment investigated competitive interactions between four native grasses, two C3 species (Microlaena stipoides and Austrodanthonia racemosa) and two C4 species (Themeda australis and Bothriochloa macra), and N. trichotoma at three different N levels (equivalent to 0, 60 and 120 kg ha-1) and three competing densities (zero, one and eight neighbouring plants), using an additive design. KEY RESULTS: All native grasses were competitive with N. trichotoma at low N levels, but only M. stipoides was competitive at high N. High densities of native grasses (8:1) had a major competitive effect on N. trichotoma at all N levels. The competitive ranking of native grasses, across all N levels, on N. trichotoma was: M. stipoides>A. racemosa>B. macra>T. australis. The C3 species were generally more competitive than the C4 species and C4 grasses were not inherently more productive at low N levels, in contrast to the results of other studies. CONCLUSION: To resist invasion from N. trichotoma, these native grasses need to be maintained at a high density and/or biomass. The results do not support the theory that species such as N. trichotoma, with high tissues density, are always less competitive than those of low tissue density; in this case competitiveness depended on N levels. The ability of N. trichotoma to accumulate biomass at a higher rate than these native grasses, helps to explain why it is a major weed in disturbed Australian native grasslands.


Asunto(s)
Nitrógeno/metabolismo , Poaceae/metabolismo , Australia , Biomasa , Suelo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...