Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165844, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32480040

RESUMEN

The iron-containing protein, acireductone dioxygenase 1 (ADI1), is a dioxygenase important for polyamine synthesis and proliferation. Using differential proteomics, the studies herein demonstrated that ADI1 was significantly down-regulated by cellular iron depletion. This is important, since ADI1 contains a non-heme, iron-binding site critical for its activity. Examination of multiple human cell-types demonstrated a significant decrease in ADI1 mRNA and protein after incubation with iron chelators. The decrease in ADI1 after iron depletion was reversible upon incubation of cells with the iron salt, ferric ammonium citrate (FAC). A significant decrease in ADI1 mRNA levels was observed after 14 h of iron depletion. In contrast, the chelator-mediated reduction in ADI1 protein occurred earlier after 10 h of iron depletion, suggesting additional post-transcriptional regulation. The proteasome inhibitor, MG-132, prevented the iron chelator-mediated decrease in ADI1 expression, while the lysosomotropic agent, chloroquine, had no effect. These results suggest an iron-dependent, proteasome-mediated, degradation mechanism. Poly r(C)-binding protein (PCBPs) 1 and 2 act as iron delivery chaperones to other iron-containing dioxygenases and were shown herein for the first time to be regulated by iron levels. Silencing of PCBP1, but not PCBP2, led to loss of ADI1 expression. Confocal microscopy co-localization studies and proximity ligation assays both demonstrated decreased interaction of ADI1 with PCBP1 and PCBP2 under conditions of iron depletion using DFO. These data indicate PCBP1 and PCBP2 interact with ADI1, but only PCBP1 plays a role in ADI1 expression. In fact, PCBP2 appeared to play an accessory role, being involved as a potential co-chaperone.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Hierro/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leupeptinas , Potencial de la Membrana Mitocondrial , Chaperonas Moleculares/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Proteínas de Unión al ARN/genética , Especies Reactivas de Oxígeno/metabolismo , Zinc/metabolismo
2.
Antioxid Redox Signal ; 33(12): 816-838, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31672021

RESUMEN

Significance: Vitamin C or ascorbate (Asc) is a water-soluble vitamin and an antioxidant that is involved in many crucial biological functions. Asc's ability to reduce metals makes it an essential enzyme cofactor. Recent Advances: The ability of Asc to act as a reductant also plays an important part in its overall role in iron metabolism, where Asc induces both nontransferrin-bound iron and transferrin-bound iron uptake at physiological concentrations (∼50 µM). Moreover, Asc has emerged to play an important role in multiple diseases and its effects at pharmacological doses could be important for their treatment. Critical Issues: Asc's role as a regulator of cellular iron metabolism, along with its cytotoxic effects and different roles at pharmacological concentrations, makes it a candidate as an anticancer agent. Ever since the controversy regarding the studies from the Mayo Clinic was finally explained, there has been a renewed interest in using Asc as a therapeutic approach toward cancer due to its minimal side effects. Numerous studies have been able to demonstrate the anticancer activity of Asc through selective oxidative stress toward cancer cells via H2O2 generation at pharmacological concentrations. Studies have demonstrated that Asc's cytotoxic mechanism at concentrations (>1 mM) has been associated with decreased cellular iron uptake. Future Directions: Recent studies have also suggested other mechanisms, such as Asc's effects on autophagy, polyamine metabolism, and the cell cycle. Clearly, more has yet to be discovered about Asc's mechanism of action to facilitate safe and effective treatment options for cancer and other diseases.


Asunto(s)
Ácido Ascórbico/metabolismo , Hierro/metabolismo , Neoplasias/metabolismo , Autofagia , Biomarcadores , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología , Poliaminas/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1863(9): 1390-1397, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31202693

RESUMEN

BACKGROUND: Multi-drug resistance (MDR) is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Moreover, the tumor micro-environment is essential to the formation of drug resistant cancers. Recent evidence indicates that the tumor micro-environment is a critical regulator of cancer progression, distant metastasis and acquired resistance of tumors to various therapies. Despite significant advances in chemotherapy and radiotherapy, the development of therapeutic resistance leads to reduced drug efficacy. SCOPE OF REVIEW: This review highlights mechanistic aspects of the biochemistry of the tumor micro-enviroment, such as the hypoglycaemia, reactive oxygen species (ROS), hypoxia and their effects in propagating MDR. This is achieved through: (A) increased survival via autophagy and failure of apoptosis; (B) altered metabolic processing; and (C) reduction in drug delivery and uptake or increased drug efflux. MAJOR CONCLUSIONS: The development of MDR in cancer has been demonstrated to be majorly influenced by naturally occurring stressors within the tumor micro-environment, as well as chemotherapeutics. Thus, the tumor micro-environment is currently emerging as a major focus of research which needs to be carefully addressed before cancer can be successfully treated. GENERAL SIGNIFICANCE: Elucidating the biochemical mechanisms which promote MDR is essential in development of effective therapeutics that can overcome these acquired defences in cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Microambiente Tumoral , Antineoplásicos/farmacología , Autofagia , Progresión de la Enfermedad , Humanos , Metástasis de la Neoplasia
4.
Oxid Med Cell Longev ; 2019: 6392763, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057691

RESUMEN

The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and Friedreich's ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.


Asunto(s)
Antioxidantes/metabolismo , Apoptosis , Autofagia , Metabolismo Energético , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1862(9): 2053-2068, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890242

RESUMEN

Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.


Asunto(s)
Proliferación Celular , Neoplasias/fisiopatología , Poliaminas/metabolismo , Animales , Humanos
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2793-2813, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29777905

RESUMEN

Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the "reprogramming" of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.


Asunto(s)
Proliferación Celular/fisiología , Enzimas/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas/fisiología , Poliaminas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quelantes/farmacocinética , Regulación hacia Abajo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Regulación hacia Arriba
7.
J Biol Chem ; 293(10): 3562-3587, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29305422

RESUMEN

Multidrug resistance (MDR) is a major obstacle in cancer treatment due to the ability of tumor cells to efflux chemotherapeutics via drug transporters (e.g. P-glycoprotein (Pgp; ABCB1)). Although the mechanism of Pgp-mediated drug efflux is known at the plasma membrane, the functional role of intracellular Pgp is unclear. Moreover, there has been intense focus on the tumor micro-environment as a target for cancer treatment. This investigation aimed to dissect the effects of tumor micro-environmental stress on subcellular Pgp expression, localization, and its role in MDR. These studies demonstrated that tumor micro-environment stressors (i.e. nutrient starvation, low glucose levels, reactive oxygen species, and hypoxia) induce Pgp-mediated drug resistance. This occurred by two mechanisms, where stressors induced 1) rapid Pgp internalization and redistribution via intracellular trafficking (within 1 h) and 2) hypoxia-inducible factor-1α expression after longer incubations (4-24 h), which up-regulated Pgp and was accompanied by lysosomal biogenesis. These two mechanisms increased lysosomal Pgp and facilitated lysosomal accumulation of the Pgp substrate, doxorubicin, resulting in resistance. This was consistent with lysosomal Pgp being capable of transporting substrates into lysosomes. Hence, tumor micro-environmental stressors result in: 1) Pgp redistribution to lysosomes; 2) increased Pgp expression; 3) lysosomal biogenesis; and 4) potentiation of Pgp substrate transport into lysosomes. In contrast to doxorubicin, when stress stimuli increased lysosomal accumulation of the cytotoxic Pgp substrate, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), this resulted in the agent overcoming resistance. Overall, this investigation describes a novel approach to overcoming resistance in the stressful tumor micro-environment.


Asunto(s)
Antineoplásicos/farmacología , Lisosomas/efectos de los fármacos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Tiosemicarbazonas/farmacología , Microambiente Tumoral/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/agonistas , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Acridinas/farmacología , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/agonistas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Biogénesis de Organelos , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Tetrahidroisoquinolinas/farmacología
8.
Biochim Biophys Acta Gen Subj ; 1862(3): 761-774, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29032246

RESUMEN

BACKGROUND: The cyclin-dependent kinase inhibitor, p21, is well known for its role in cell cycle arrest. Novel anti-cancer agents that deplete iron pools demonstrate marked anti-tumor activity and are also active in regulating p21 expression. These agents induce p21 mRNA levels independently of the tumor suppressor, p53, and differentially regulate p21 protein expression depending on the cell-type. Several chelators, including an analogue of the potent anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), have entered clinical trials, and thus, their molecular mechanism of action is crucial to assess. Hence, this investigation examined how several iron chelators transcriptionally regulate p21. METHODS: Promoter-deletion constructs; luciferase assays; RT-PCR; western analysis; gene silencing; co-immunoprecipitation. RESULTS: The transcriptional regulation of the p21 promoter by iron chelators was demonstrated to be dependent on the chelator and cell-type examined. The potent anti-cancer chelator, Dp44mT, induced p21 promoter activity in SK-MEL-28 melanoma cells, but not in MCF-7 breast cancer cells. Further analysis of the p21 promoter identified a 50-bp region between -104 and -56-bp that was required for Dp44mT-induced activation in SK-MEL-28 cells. This region contained several Sp1-binding sites and mutational analysis of this region revealed the Sp1-3-binding site played a significant role in Dp44mT-induced activation of p21. Further, co-immunoprecipitation demonstrated that Dp44mT induced a marked increase in the interactions between Sp1 and the transcription factors, estrogen receptor-α and c-Jun. CONCLUSIONS AND GENERAL SIGNIFICANCE: Dp44mT-induced p21 promoter activation via the Sp1-3-binding site and increased Sp1/ER-α and Sp1/c-Jun complex formation in SK-MEL-28 cells, suggesting these complexes were involved in p21 promoter activation.


Asunto(s)
Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quelantes del Hierro/farmacología , Proteínas de Neoplasias/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Tiosemicarbazonas/farmacología , Activación Transcripcional/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7 , Melanoma/patología , Estructura Molecular , Mutación , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Eliminación de Secuencia , Factores de Transcripción/metabolismo
9.
Carbohydr Polym ; 165: 247-254, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363547

RESUMEN

As a dry-based electrorheological (ER) material, phosphate microcrystalline cellulose (MCC), which exhibits ER properties under anhydrous conditions, was fabricated by the phosphorylation of MCC particles. The MCC particles were initially synthesized by the three step preparation of an alkali treatment, bleaching, and hydrolysis of cellulose particles from rice husk. The phosphate MCC was then synthesized via the phosphoric ester reaction of urea with phosphoric acid and MCC, and its chemical characteristics were examined by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The phosphate MCC particles were dispersed in silicone oil to produce an ER fluid (10vol%), and its chain structure was observed directly by optical microscopy. The rheological behavior of the ER fluid was tested using a rotational rheometer under a range of electric fields, showing a polarization mechanism with a slope of 2.0 for the yield stress as a function of the applied electric field strengths.


Asunto(s)
Celulosa/química , Oryza , Fosfatos/química , Hidrólisis , Reología , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
10.
Pharmacol Res ; 119: 118-127, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28087444

RESUMEN

Autophagy is an evolutionary conserved cellular catabolic degradation process in response to stress which involves lysosomal degradation of unnecessary or damaged organelles and misfolded proteins. This is primarily a pro-survival pathway providing the cell with essential nutrients during stressful conditions. There are number of essential metal ions, which are required for normal physiological functioning of cells. Studies have shown that autophagy can be regulated by cellular metal ion concentrations. On the other hand, autophagy is also shown to regulate intracellular levels of certain metal ions. This review discusses recent advances in the research examining the role of metal ions in the autophagic pathway.


Asunto(s)
Autofagia , Metales/metabolismo , Animales , Calcio/metabolismo , Cobre/metabolismo , Humanos , Iones/metabolismo , Hierro/metabolismo , Potasio/metabolismo , Transducción de Señal , Zinc/metabolismo
11.
J Biol Chem ; 291(3): 1029-52, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26534963

RESUMEN

N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-ß pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias del Colon/metabolismo , Receptores ErbB/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/metabolismo , Piridinas/uso terapéutico , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Tiosemicarbazonas/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/agonistas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Piridinas/farmacología , Interferencia de ARN , Distribución Aleatoria , Receptor ErbB-2/agonistas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/agonistas , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tiosemicarbazonas/farmacología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nutrients ; 7(4): 2274-96, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25835049

RESUMEN

Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB); may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent "IRP1-HIF2α axis"; DCYTB and ascorbate in relation to iron metabolism.


Asunto(s)
Citocromos b/metabolismo , Duodeno/efectos de los fármacos , Hierro de la Dieta/farmacocinética , Animales , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Grupo Citocromo b/metabolismo , Modelos Animales de Enfermedad , Duodeno/metabolismo , Eritropoyesis/efectos de los fármacos , Humanos , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Hierro de la Dieta/administración & dosificación
13.
Oncotarget ; 6(11): 8851-74, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25860930

RESUMEN

N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Transducción de Señal/fisiología , Adenocarcinoma/patología , Línea Celular Tumoral , Movimiento Celular , Neoplasias del Colon/patología , Proteína Sustrato Asociada a CrK/fisiología , Regulación hacia Abajo , Activación Enzimática/fisiología , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Genes src , Humanos , Indoles , Masculino , Fosforilación , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-abl/fisiología , Proteínas Proto-Oncogénicas c-crk/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes/metabolismo , Sulfonamidas , Quinasas p21 Activadas/fisiología , Proteína de Unión al GTP rac1/fisiología
14.
J Biol Chem ; 289(14): 9692-709, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24532803

RESUMEN

N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.


Asunto(s)
Autofagia , Proteínas de Ciclo Celular/biosíntesis , Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cobre/metabolismo , Deferoxamina/farmacología , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Hierro/metabolismo , Quelantes del Hierro/farmacología , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tiosemicarbazonas/farmacología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
15.
J Clin Pathol ; 66(11): 911-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23750037

RESUMEN

N-myc downstream regulated gene 1 (NDRG1) has been well characterised to act as a metastatic suppressor in a number of human cancers. It has also been implicated to have a significant function in a number of physiological processes such as cellular differentiation and cell cycle. In this review, we discuss the role of NDRG1 in cancer pathology. NDRG1 was observed to be downregulated in the majority of cancers. Moreover, the expression of NDRG1 was found to be significantly lower in neoplastic tissues as compared with normal tissues. The most important function of NDRG1 in inhibiting tumour progression is associated with its ability to suppress metastasis. However, it has also been shown to have important effects on other stages of cancer progression (primary tumour growth and angiogenesis). Recently, novel iron chelators with selective antitumour activity (ie, Dp44mT, DpC) were shown to upregulate NDRG1 in cancer cells. Moreover, Dp44mT showed its antimetastatic potential only in cells expressing NDRG1, making this protein an important therapeutic target for cancer chemotherapy. This observation has led to increased interest in the examination of these novel anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quelantes del Hierro/farmacología , Neoplasias/patología , Tiosemicarbazonas/farmacología , Ciclo Celular , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Movimiento Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Humanos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Quelantes del Hierro/química , Metástasis de la Neoplasia , Neoplasias/terapia , Tiosemicarbazonas/química , Regulación hacia Arriba
16.
Carcinogenesis ; 34(9): 1943-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23671130

RESUMEN

The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, being a promising new target for cancer treatment. However, the precise molecular effects of NDRG1 remain unclear. Herein, we summarize recent advances in understanding the impact of NDRG1 on cancer metastasis with emphasis on its interactions with the key oncogenic nuclear factor-kappaB, phosphatidylinositol-3 kinase/phosphorylated AKT/mammalian target of rapamycin and Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways. Recent studies demonstrating the inhibitory effects of NDRG1 on the epithelial-mesenchymal transition, a key initial step in metastasis, TGF-ß pathway and the Wnt/ß-catenin pathway are also described. Furthermore, NDRG1 was also demonstrated to regulate molecular motors in cancer cells, leading to inhibition of F-actin polymerization, stress fiber formation and subsequent reduction of cancer cell migration. Collectively, this review summarizes the underlying molecular mechanisms of the antimetastatic effects of NDRG1 in cancer cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Metástasis de la Neoplasia/genética , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Actinas/genética , Proteínas de Ciclo Celular/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...