Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(18): 168703, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004265

RESUMEN

Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid-liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins in vitro is highly concentration-dependent, yet biomolecular condensates in vivo contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.


Asunto(s)
Priones , Gránulos de Estrés , Priones/metabolismo , Priones/química , Gránulos de Estrés/metabolismo , Humanos , Dominios Proteicos , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Interacciones Hidrofóbicas e Hidrofílicas , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química
2.
Proc Natl Acad Sci U S A ; 117(11): 5826-5835, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32127480

RESUMEN

Mutations in a number of stress granule-associated proteins have been linked to various neurodegenerative diseases. Several of these mutations are found in aggregation-prone prion-like domains (PrLDs) within these proteins. In this work, we examine the sequence features governing PrLD localization to stress granules upon stress. We demonstrate that many yeast PrLDs are sufficient for stress-induced assembly into microscopically visible foci that colocalize with stress granule markers. Additionally, compositional biases exist among PrLDs that assemble upon stress, and these biases are consistent across different stressors. Using these biases, we have developed a composition-based prediction method that accurately predicts PrLD assembly into foci upon heat shock. We show that compositional changes alter PrLD assembly behavior in a predictable manner, while scrambling primary sequence has little effect on PrLD assembly and recruitment to stress granules. Furthermore, we were able to design synthetic PrLDs that were efficiently recruited to stress granules, and found that aromatic amino acids, which have previously been linked to PrLD phase separation, were dispensable for this recruitment. These results highlight the flexible sequence requirements for stress granule recruitment and suggest that PrLD localization to stress granules is driven primarily by amino acid composition, rather than primary sequence.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas Priónicas/química , Dominios Proteicos , Estrés Fisiológico/fisiología , Composición de Base , Proteínas de Choque Térmico/metabolismo , Mutación , Enfermedades Neurodegenerativas/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de Proteína , Azida Sódica/farmacología , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA