Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci ; 351: 122844, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897344

RESUMEN

AIMS: Leishmaniasis, caused by the protozoan parasite poses a significant health burden globally. With a very few specific drugs, increased drug resistance it is important to look for drug repurposing along with the identification of pre-clinical candidates against visceral leishmaniasis. This study aims to identify potential drug candidates against visceral leishmaniasis by targeting leishmanial MAP kinases and screening FDA approved protein kinase inhibitors. MATERIALS AND METHODS: MAP kinases were identified from the Leishmania genome. 12 FDA approved protein kinase inhibitors were screened against Leishmania MAP kinases. Binding affinity, ADME and toxicity of identified drug candidates were profiled. The anti-proliferative effects and mechanism of action were assessed in Leishmania, including changes in cell morphology, flagellar length, cell cycle progression, reactive oxygen species (ROS) generation, and intra-macrophage parasitic burden. KEY FINDINGS: 23 MAP kinases were identified from the Leishmania genome. Sorafenib and imatinib emerged as repurposable drug candidates and demonstrated excellent anti-proliferative effects in Leishmania. Treatment with these inhibitors resulted in significant changes in cell morphology, flagellar length, and cell cycle arrest. Furthermore, sorafenib and imatinib promoted ROS generation and reduced intra-macrophage parasitic burden, and elicited anti-leishmanial activity in in vivo experimental VL models. SIGNIFICANCE: Collectively, these results imply involvement of MAP kinases in infectivity and survival of the parasite and can pave the avenue for repurposing sorafenib and imatinib as anti-leishmanial agents. These findings contribute to the exploration of new treatment options for visceral leishmaniasis, particularly in the context of emerging drug resistance.


Asunto(s)
Antiprotozoarios , Reposicionamiento de Medicamentos , Leishmania , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Animales , Ratones , Leishmania/efectos de los fármacos , Leishmania/enzimología , Antiprotozoarios/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Ratones Endogámicos BALB C , Humanos , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Femenino , Sorafenib/farmacología , Mesilato de Imatinib/farmacología
2.
ACS Appl Bio Mater ; 7(1): 369-378, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150107

RESUMEN

Vesicular carriers of drugs are popular for specific targeting and delivery. The most popular vesicles among these are liposomes. However, they suffer from some inherent limitations. In this work, alternative vesicles with enhanced stability, i.e., niosomes and bilosomes have been prepared, characterized, and their delivery efficiency studied. Bilosomes have the additional advantage of being able to withstand the harsh environment of the gastrointestinal tract (GIT). The taurine-derived bile salt (NaTC) was incorporated into the bilosome bilayer. The inspiration behind NaTC insertion is the recent reports on antiaging action and immune function of taurine. Fluorescence probing was used to study the vesicle environment. The entrapment and subsequent release of the important cAMP-specific PDE4 inhibitor/drug Rolipram, which has antibreast cancer properties, was assessed on the breast cancer cell line MCF-7. Rolipram has important therapeutic applications, one of the most significant in recent times being the treatment of Covid-19-triggered pneumonia and cytokine storms. As for cancer chemotherapy, the localization of drug, targeted delivery, and sustained release are extremely important issues, and it seemed worthwhile to explore the potential of the bilosomes and niosomes to entrap and release Rolipram. The important finding is that niosomes perform much better than bilosomes in the hormone-responsive breast cancer mileau MCF-7. Moreover, there was a 4-fold decrease in the IC50 of Rolipram encapsulated in niosomes compared to Rolipram alone. On the other hand, bilosome-encapsulated Rolipram shows higher IC50 value. The results can be further understood by molecular docking studies.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Fosfodiesterasa 4 , Humanos , Femenino , Rolipram/farmacología , Rolipram/uso terapéutico , Liposomas , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Simulación del Acoplamiento Molecular , Taurina
3.
J Cell Biochem ; 123(12): 1980-1996, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063486

RESUMEN

Ineffective cancer treatment is implicated in metastasis, recurrence, resistance to chemotherapy and radiotherapy, and evasion of immune surveillance. All these failures occur due to the persistence of cancer stem cells (CSCs) even after rigorous therapy, thereby rendering them as essential targets for cancer management. Contrary to the quiescent nature of CSCs, a gene profiler array disclosed that phosphatidylinositol-3-kinase (PI3K), which is known to be crucial for cell proliferation, differentiation, and survival, was significantly upregulated in CSCs. Since PI3K is modulated by cyclic adenosine 3',5' monophosphate (cAMP), analyses of cAMP regulation revealed that breast CSCs expressed increased levels of phosphodiesterase 4 (PDE4) in contrast to normal stem cells. In accordance, the effects of rolipram, a PDE4 inhibitor, were evaluated on PI3K regulators and signaling. The efficacy of rolipram was compared with paclitaxel, an anticancer drug that is ineffective in obliterating breast CSCs. Analyses of downstream signaling components revealed a switch between cell survival and death, in response to rolipram, specifically of the CSCs. Rolipram-mediated downregulation of PDE4A levels in breast CSCs led to an increase in cAMP levels and protein kinase A (PKA) expression. Subsequently, PKA-mediated upregulation of phosphatase and tensin homolog antagonized the PI3K/AKT/mTOR pathway and led to cell cycle arrest. Interestingly, direct yet noncanonical activation of mTOR by PKA, circumventing the influence of PI3K and AKT, temporally shifted the fate of CSCs toward apoptosis. Rolipram in combination with paclitaxel indicated synergistic consequences, which effectively obliterated CSCs within a tumor, thereby suggesting combinatorial therapy as a sustainable and effective strategy to abrogate breast CSCs for better patient prognosis.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Fosfodiesterasa 4 , Humanos , Femenino , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/metabolismo , Rolipram/farmacología , Rolipram/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Paclitaxel/farmacología , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA