Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 95(24): e0134521, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586858

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, small interfering RNA (siRNA) interference, specific pharmacological inhibitors, and dominant negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin, and a low-pH environment but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV, has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis and provide clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis, which does not require a specific receptor, and clathrin-mediated endocytosis, which requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.


Asunto(s)
Infecciones por Coronavirus/virología , Deltacoronavirus/fisiología , Dinaminas/metabolismo , Endocitosis , Células Epiteliales/virología , Animales , Línea Celular , Supervivencia Celular , Clatrina/metabolismo , Coronavirus/genética , Concentración de Iones de Hidrógeno , Íleon/virología , Riñón/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Pinocitosis , ARN Interferente Pequeño/metabolismo , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Proteínas de Unión al GTP rab5/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-32656094

RESUMEN

As an emerging swine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) not only causes serious diarrhea in suckling piglets but also possesses the potential for cross-species transmission, which has sparked growing interest when studying this emerging virus. We previously identified a novel accessory protein NS7a encoded by PDCoV; however, the function of NS7a was not resolved. In this study, we demonstrated that PDCoV NS7a is an interferon antagonist. Overexpression of NS7a notably inhibited Sendai virus (SeV)-induced interferon-ß (IFN-ß) production and the activation of IRF3 rather than NF-κB. NS7a also inhibited IFN-ß promoter activity induced by RIG-I, MDA5, MAVS, TBK1, and IKKε, which are key components of the RIG-I-like receptor (RLR) signaling pathway but not IRF3, the transcription factor downstream of TBK1/IKKε. Surprisingly, NS7a specifically interacts with IKKε but not with the closely related TBK1. Furthermore, NS7a interacts simultaneously with the kinase domain (KD) and the scaffold dimerization domain (SDD) of IKKε, competing with TRAF3, and IRF3 for binding to IKKε, leading to the reduction of RLR-mediated IFN-ß production. The interactions of TRAF3-IKKε and IKKε-IRF3 are also attenuated in PDCoV-infected cells. Taken together, our results demonstrate that PDCoV NS7a inhibits IFN-ß production by disrupting the association of IKKε with both TRAF3 and IRF3, revealing a new mechanism utilized by a PDCoV accessory protein to evade the host antiviral innate immune response.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Coronavirus/metabolismo , Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/antagonistas & inhibidores , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Coronavirus/genética , Coronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Células HEK293 , Humanos , Quinasa I-kappa B/inmunología , Evasión Inmune , Factor 3 Regulador del Interferón/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferón beta/biosíntesis , Interferón beta/inmunología , Receptores de Ácido Retinoico/metabolismo , Virus Sendai/inmunología , Virus Sendai/metabolismo , Transducción de Señal , Porcinos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
3.
Virology ; 539: 38-48, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31670218

RESUMEN

Ionic calcium (Ca2+) is a versatile intracellular second messenger that plays important roles in cellular physiological and pathological processes. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that causes serious vomiting and diarrhea in suckling piglets. In this study, the role of Ca2+ to PDCoV infection was investigated. PDCoV infection was found to upregulate intracellular Ca2+ concentrations of IPI-2I cells. Chelating extracellular Ca2+ by EGTA inhibited PDCoV replication, and this inhibitory effect was overcome by replenishment with CaCl2. Treatment with Ca2+ channel blockers, particularly the L-type Ca2+ channel blocker diltiazem hydrochloride, inhibited PDCoV infection significantly. Mechanistically, diltiazem hydrochloride reduces PDCoV infection by inhibiting the replication step of the viral replication cycle. Additionally, knockdown of CACNA1S, the L-type Ca2+ voltage-gated channel subunit, inhibited PDCoV replication. The combined results demonstrate that PDCoV modulates calcium influx to favor its replication.


Asunto(s)
Calcio/metabolismo , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/virología , Replicación Viral , Animales , Señalización del Calcio , Porcinos , Porcinos Enanos
4.
Viruses ; 11(12)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835577

RESUMEN

Lipids play a crucial role in the replication of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine virus that is endemic throughout the world. However, little is known about the effect of fatty acids (FAs), a type of vital lipid, on PRRSV infection. In this study, we found that treatment with a FA biosynthetic inhibitor significantly inhibited PRRSV propagation, indicating the necessity of FAs for optimal replication of PRRSV. Further study revealed that 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK), a key kinase antagonizing FA biosynthesis, was strongly activated by PRRSV and the pharmacological activator of AMPK exhibited anti-PRRSV activity. Additionally, we found that acetyl-CoA carboxylase 1 (ACC1), the first rate-limiting enzyme in the FA biosynthesis pathway, was phosphorylated (inactive form) by PRRSV-activated AMPK, and active ACC1 was required for PRRSV proliferation, suggesting that the PRRSV infection induced the activation of the AMPK-ACC1 pathway, which was not conducive to PRRSV replication. This work provides new evidence about the mechanisms involved in host lipid metabolism during PRRSV infection and identifies novel potential antiviral targets for PRRSV.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Interacciones Huésped-Patógeno , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Animales , Vías Biosintéticas/efectos de los fármacos , Modelos Biológicos , Transducción de Señal , Porcinos , Replicación Viral
5.
J Immunol ; 201(8): 2345-2353, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30158128

RESUMEN

As one of the most significant etiological agents in pigs, porcine reproductive and respiratory syndrome virus (PRRSV) has adversely impacted the global swine industry since it was discovered in the 1980s. The mRNA-decapping enzyme 1a (DCP1a), a regulatory factor involved in removing the 5'-methylguanosine cap from eukaryotic mRNA, has recently been identified as an IFN-stimulated gene. However, the role of DCP1a in PRRSV infection is not well understood. In this study, overexpression and knockdown of porcine DCP1a (pDCP1a) showed that pDCP1a affected PRRSV infection. Interestingly, we found that PRRSV infection significantly downregulated pDCP1a expression at the protein level by cleaving pDCP1a. Furthermore, we demonstrated that PRRSV nonstructural protein 4 (nsp4), a 3C-like proteinase, is responsible for pDCP1a cleavage, and the cleaved site is at glutamic acid 238 (E238) of pDCP1a. The mutant pDCP1a-E238A, which cannot be cleaved by nsp4, showed higher anti-PRRSV activity, and the antiviral effects of two cleavage products (pDCP1a1-238 and pDCP1a239-580) were significantly decreased compared with wild type pDCP1a. Unexpectedly, PRRSV infection or overexpression of nsp4 did not cleave monkey DCP1a, and monkey DCP1a showed a higher anti-PRRSV activity than pDCP1a. Taken together, this study reveals a new strategy evolved by PRRSV to dampen the host defense, complementing the known PRRSV-mediated immune evasion mechanisms.


Asunto(s)
Antivirales/metabolismo , Endopeptidasas/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Porcinos/inmunología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Endopeptidasas/genética , Ácido Glutámico/genética , Haplorrinos , Interacciones Huésped-Patógeno , Evasión Inmune , Mutación/genética , Proteolisis , Transducción de Señal , Especificidad de la Especie , Porcinos/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA