Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(20): 29730-29748, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584234

RESUMEN

In geotechnical engineering, a large number of pillars are often left in underground space to support the overlying strata and protect the surface environment. To enhance pillar stability and prevent instability, this study proposes an innovative technology for pillar reinforcement. Specifically, local confinement of the pillar is achieved through fiber-reinforced polymer (FRP) strips, resulting in the formation of a more stable composite structure. In order to validate the effectiveness of this structural approach, acoustic emission characteristics and surface strain field characteristics were monitored during failure processes, while mathematical models were employed to predict specimen instability. The test results revealed that increasing FRP strip confinement width led to heightened activity in acoustic emission events during failure processes, accompanied by a decrease in shear cracks but an increase in tensile cracks. Moreover, ductility was improved and deformation resistance capacity was enhanced within specimens. Notably, initial crack generation occurred within unconfined regions of specimens during failures; however, both length and width as well as overall numbers of cracks significantly decreased due to implementation of FRP strips. Consequently, specimen failure speed was slowed down accordingly. Finally, the instability of the partial FRP-confined cement mortar could be more accurately predicted based on the model of FRP-confined concrete. It was verified by the test results.


Asunto(s)
Materiales de Construcción , Polímeros , Polímeros/química , Ensayo de Materiales , Modelos Teóricos
2.
Materials (Basel) ; 16(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37048983

RESUMEN

The fracturing behaviors of serial coal pillars is significant for understanding their failure mechanism. To reveal this, the bearing stress, acoustic emission, electrical resistivity, local strain, force chain distribution, and cracks evolution of serial coal pillars under uniaxial compression were evaluated by experiment and numerical simulation. The results show that four bearing stages are observed during the fracturing process (i.e., nonlinear growth, linear growth, yielding growth, and weakening stages). The acoustic emission features, electrical resistivity responses, strain develops, force chain distributions, cracks evolutions, and local displacement are highly consistent to illustrate the fracturing behaviors. System fracturing of serial coal pillar specimens is appeared along with the collapse of lower uniaxial compressive strength coal pillar specimen. The limit bearing capacity of serial coal pillar specimens is almost equal to the strength of lower uniaxial compressive strength coal pillar specimen. The unbalanced deformation characteristics of serial coal pillar specimens are presented due to the strength differences. The evolution of the key deformation element is the rooted reason for the overall fracturing mechanism of serial coal pillar specimens. For serial coal pillar specimens with different strengths, the critical condition of system fracturing is that the sum of secant modulus of upper and bottom coal pillars is zero, which is expected to predict the system fracturing of serial pillars in the underground coal mining.

3.
Materials (Basel) ; 15(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36233899

RESUMEN

In underground engineering, shear failure is a common failure type in coal-rock mass under medium and low strain-rate disturbance loads. Analyzing the shear failure mechanical properties of coal-rock mass under dynamic normal load is significant. In order to reveal the influence of disturbance load on the shear mechanical properties of coal rock, a dynamic and static load coupling electro-hydraulic servo testing machine was used to conduct the shear tests of coal-like rock materials under dynamic and constant normal load. The amplitude of dynamic load is 10 kN and the frequency is 5 Hz. The damage process of the specimens was detected by the acoustic emission (AE) detection system. The results imply that the shear failure process of coal-like rock materials under constant normal load can be divided into four stages. The normal disturbance decreased the shear strength of the specimens and increased the shear modulus of the specimens. With the increase in normal load, the influence of disturbance on the shear strength of the specimen decreased. By analyzing the AE parameters, it was found that the dynamic load made the internal damage of the specimen more severe during the shear failure process. The damage variable was calculated by AE cumulative energy, and the damage evolution was divided into three stages. The shear failure mechanism of the specimen was judged by RA (rise time/amplitude) and AF (average frequency). It was found that from the elastic deformation stage to the unstable development fracture stage, the proportion of shear fracture increased. When the dynamic normal load was 10 kN and 30 kN, the fracture was mainly shear fracture; When the dynamic normal load was 50 kN, the fracture was mainly tensile or mixed fracture. The dynamic normal load affects the shear strength and failure mechanism. Therefore, the influence of disturbance load on coal-rock mass strength cannot be ignored in underground engineering.

4.
Materials (Basel) ; 15(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36233976

RESUMEN

In order to study the weakening mechanism and mechanical behaviors of hard lamprophyre of Carboniferous Permian coal-bearing strata in China's mining area, lamprophyre samples were subjected to static rock dissolution experiments with pH values of 0, 2, and 4. The acid corrosion mechanism of lamprophyre was revealed from the weight changes of samples, characteristics of solution ion concentration, and macro-mechanical properties. The experimental results show that reaction occurred between lamprophyre and acid solution. With the increasing concentration of H+, the reaction was more intense, the degree of acid etching was higher, and the weight loss was greater. The internal damage induced by acid etching results in the slow extension of the compaction stage of stress-strain curve of uniaxial compression, and the obvious deterioration of mechanical properties of the lamprophyre. The uniaxial compressive strength of the lamprophyre in the dry state is 132 MPa, which decreased to 39 MPa under the acid etching condition, showing significant mudding characteristics. Dolomite (CaMg(CO3)2 with 19.63%) and orthoclase (KAlSi3O8 with 31.4%) in lamprophyre are the major minerals constituents involved in acidification reaction. Photomicrograph recorded from SEM studies reveals that the dissolution effect was directly related to the concentration of H+ in the solution. The dissolution effect was from the surface to the inside. The small dissolution pores became larger and continuously expanded, then finally formed a skeleton structure dominated by quartz. The content of K+, Ca2+, and Mg2+ in the solution after acid etching reaction indicates that the acidified product of orthoclase is colloidal H2SiO3, which adhered to the surface of samples during acid etching and hinders the further acidification of minerals. The dissolution of dolomite and orthoclase under acidic conditions directly leads to the damage of their structure and further promotes the water-rock interaction, which is the fundamental reason for the weakening of the mechanical properties of lamprophyre.

5.
R Soc Open Sci ; 5(8): 180346, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30225022

RESUMEN

Upward mining of the residual coal seam over an abandoned pillar working is one of the effective measures to alleviate the contradiction between limited resources and increased consumption. Interburden stability over an abandoned pillar working plays a significant role in guaranteeing the safety of upward mining; however, it has not yet been extensively studied and understood. In this study, the vertical stress of the interburden over an abandoned pillar working was first investigated. The mechanical model of the interburden was established and the damage conditions were analysed. Then, the stability of the interburden over 38502 abandoned workings in Baijiazhuang coal mine was determined by mechanical analysis and field monitoring. The results show that: (i) Vertical stress of the interburden over abandoned mining zones is clearly lower than the initial stress, indicating the existence of a de-stressed effect. Moreover, vertical stress of the interburden over residual coal pillars is greater than the initial stress, which is the evidence of a stress concentration effect. (ii) The interburden over an abandoned pillar working should be regarded as an elastic rectangular plate supported by generalized Kelvin bodies in mechanical modelling. (iii) The interburden over abandoned mining zones may experience two damage stages. In the first stage, initial plastic damage appears at the central region of interburden. In the second stage, the plastic damage evolves from the central point to the surrounding areas. (iv) The mechanical analysis and field monitoring both indicate the initial damage occurred at the central region over 38502 abandoned workings in Baijiazhuang coal mine before upward mining. Related rock control measures should be implemented in that region to guarantee the safe mining of the residual coal seam.

6.
Front Med ; 9(1): 112-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25098433

RESUMEN

Primary neuroendocrine breast carcinoma (NEBC) is a very rare type of breast cancer. Two characteristic biomarkers, namely, CgA and Syn, should be immunohistochemically detected to diagnose NEBC. In this study, a 43-year-old woman with a large mass of 8.3 cm × 2.9 cm in her right breast was reported. The patient was pathologically diagnosed with NEBC after specific markers, including CgA and Syn, as well as few differential markers, such as CK7, ER, PR, C-erbB-2, NSE, and E-cadherin, were immunohistochemically detected. The patient showed a remarkable response to four cycles of neo-adjuvant chemotherapy (partial response based on RECIST criteria) and sequentially underwent modified radical mastectomy. Moreover, the diagnosis and treatment of NEBC based on this case and available related literature were discussed.


Asunto(s)
Neoplasias de la Mama , Carcinoma Neuroendocrino , Quimioterapia Adyuvante/métodos , Cromogranina A/metabolismo , Mastectomía Radical Modificada/métodos , Sinaptofisina/metabolismo , Adulto , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/terapia , Femenino , Humanos , Inmunohistoquímica , Mamografía/métodos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...