Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536669

RESUMEN

BACKGROUNDCOVID-19 remains a global health emergency with limited treatment options, lagging vaccine rates, and inadequate healthcare resources in the face of an ongoing calamity. The disease is characterized by immune dysregulation and cytokine storm. Cyclosporine A (CSA) is a calcineurin inhibitor that modulates cytokine production and may have direct antiviral properties against coronaviruses.METHODSTo test whether a short course of CSA was safe in patients with COVID-19, we treated 10 hospitalized, oxygen-requiring, noncritically ill patients with CSA (starting at a dose of 9 mg/kg/d). We evaluated patients for clinical response and adverse events, measured serum cytokines and chemokines associated with COVID-19 hyperinflammation, and conducted gene-expression analyses.RESULTSFive participants experienced adverse events, none of which were serious; transaminitis was most common. No participant required intensive care unit-level care, and all patients were discharged alive. CSA treatment was associated with significant reductions in serum cytokines and chemokines important in COVID-19 hyperinflammation, including CXCL10. Following CSA administration, we also observed a significant reduction in type I IFN gene expression signatures and other transcriptional profiles associated with exacerbated hyperinflammation in the peripheral blood cells of these patients.CONCLUSIONShort courses of CSA appear safe and feasible in patients with COVID-19 who require oxygen and may be a useful adjunct in resource-limited health care settings.TRIAL REGISTRATIONThis trial was registered on ClinicalTrials.gov (Investigational New Drug Application no. 149997; ClinicalTrials.gov NCT04412785).FUNDINGThis study was internally funded by the Center for Cellular Immunotherapies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ciclosporina/uso terapéutico , Citocinas , Humanos , Oxígeno , SARS-CoV-2
2.
Langmuir ; 33(43): 11986-11997, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28949544

RESUMEN

Supported lipid bilayers (SLBs) have been used extensively in a variety of biotechnology applications and fundamental studies exploring lipid behavior. Despite their widespread use, various physicochemical parameters have yet to be thoroughly investigated for their impact on SLB formation. In this work, we have studied the importance of flow in inducing the rupture of surface adsorbed chicken egg-derived l-α-phosphatidylcholine (egg PC) vesicles on silica and gold surfaces via quartz crystal microbalance with dissipation monitoring (QCM-D). On silica at 25 °C, egg PC vesicles were found to adsorb in a flattened configuration (∼13 nm thick, compared to bulk vesicle diameters of ∼165 nm) but only undergo a transition to a stable SLB under flow conditions. In the absence of flow, an increase in system temperature to 37 °C was able to promote vesicle rupture and SLB formation on silica with a 10 times lower rupture time, compared to rupture under continuous flow (175 µL/min flow rate). Gold surfaces, with their increased hydrophobicity, led to less vesicle flattening once adsorbed (structures ∼60 nm thick), and did not support vesicle rupture or SLB formation, even at flow rates of up to 650 µL/min. We also showed that, under continuous flow conditions, vesicle adsorption rates on silica surfaces follow Langmuir kinetics, with an inverse dependence on bulk vesicle concentration, while an empirical power law dependence of vesicle rupture time on bulk vesicle concentration was observed. Ultimately, this work elicits fundamental insight into the importance of flow and bulk vesicle concentration in the adsorbed vesicle rupture process during SLB formation using QCM-D.

3.
Biophys Chem ; 203-204: 51-61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042544

RESUMEN

Knowledge of nanoparticle (NP)-membrane interactions is important to advances in nanomedicine as well as for determining the safety of NPs to humans and the ecosystem. This study focuses on a unique mechanism of cytotoxicity, cell membrane destabilization, which is principally dependent on the nanoparticle nature of the material rather than on its molecular properties. We investigated the interactions of 2, 5, 10, and 40nm gold NPs with supported lipid bilayer (SLB) of L-α-phosphatidylcholine using quartz crystal microbalance with dissipation monitoring (QCM-D). Gold NPs were tested both in the absence of and in the presence of polymethacrylic acid (PMAA), used to simulate the natural organic matter (NOM) in the environment. In the absence of PMAA, for all NP sizes, we observed only small mass losses (1 to 6ng) from the membrane. This small lipid removal may be a free energy lowering mechanism to relieve stresses induced by the adsorption of NPs, with the changes too small to affect the membrane integrity. In the presence of PMAA, we observed a net mass increase in the case of smaller NPs. We suggest that the increased adhesion between the NP and the bilayer, promoted by PMAA, causes sufficient NP adsorption on the bilayer to overcompensate for any loss of lipid. The most remarkable observation is the significant mass loss (60ng) for the case of 40nm NPs. We attribute this to the lipid bilayer engulfing the NP and leaving the crystal surface. We propose a simple phenomenological model to describe the competition between the particle-bilayer adhesion energy, the bilayer bending energy, and the interfacial energy at bilayer defect edges. The model shows that the larger NPs, which become more adhesive because of the polymer adsorption, are engulfed by the bilayer and leave the crystal surface, causing large mass loss and membrane disruption. The QCM-D measurements thus offer direct evidence that even if NPs are intrinsically not cytotoxic, they can become cytotoxic in the presence of environmental organic matter which modulates the adhesive interactions between the nanoparticle and the membrane.


Asunto(s)
Oro/química , Membrana Dobles de Lípidos/química , Nanopartículas del Metal/química , Fosfatidilcolinas/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...