Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Data ; 11(1): 130, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272960

RESUMEN

Tropical Cyclones (TCs) cause significant socio-economic damages to the US and Caribbean coastal regions annually, making it important to understand TC risk at the local-to-regional scales. However, the short length of the observed record and the substantial computational expense associated with high-resolution climate models make it difficult to assess TC risk using either approach. To overcome these challenges, we developed a database of synthetic TCs using the Risk Analysis Framework for Tropical Cyclones (RAFT). The database includes 40,000 synthetic TC tracks, along-track intensities and storm-induced precipitation. TC tracks generated in RAFT are in reasonable agreement with the observed spatial distribution of TC tracks and basin-scale TC statistics. Specifically along the coast, spatial variations in TC crossing probability and extreme winds upon landfall are well-reproduced by RAFT with R-squared values of 0.81 and 0.73, respectively. In summary, the synthetic TC database constructed with RAFT provides a reasonable pathway for the robust assessment of North Atlantic TC wind and rainfall risks.

3.
Sci Adv ; 9(14): eadf0259, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027466

RESUMEN

Several pathways for how climate change may influence the U.S. coastal hurricane risk have been proposed, but the physical mechanisms and possible connections between various pathways remain unclear. Here, future projections of hurricane activity (1980-2100), downscaled from multiple climate models using a synthetic hurricane model, show an enhanced hurricane frequency for the Gulf and lower East coast regions. The increase in coastal hurricane frequency is driven primarily by changes in steering flow, which can be attributed to the development of an upper-level cyclonic circulation over the western Atlantic. The latter is part of the baroclinic stationary Rossby waves forced mainly by increased diabatic heating in the eastern tropical Pacific, a robust signal across the multimodel ensemble. Last, these heating changes also play a key role in decreasing wind shear near the U.S. coast, further aggravating coastal hurricane risk enhanced by the physically connected steering flow changes.

4.
Sci Rep ; 8(1): 15740, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356101

RESUMEN

Hurricanes passing over the ocean can mix the water column down to great depths and resuspend massive volumes of sediments on the continental shelves. Consequently, organic carbon and reduced inorganic compounds associated with these sediments can be resuspended from anaerobic portions of the seabed and re-exposed to dissolved oxygen (DO) in the water column. This process can drive DO consumption as sediments become oxidized. Previous studies have investigated the effect of hurricanes on DO in different coastal regions of the world, highlighting the alleviation of hypoxic conditions by extreme winds, which drive vertical mixing and re-aeration of the water column. However, the effect of hurricane-induced resuspended sediments on DO has been neglected. Here, using a diverse suite of datasets for the northern Gulf of Mexico, we find that in the few days after a hurricane passage, decomposition of resuspended shelf sediments consumes up to a fifth of the DO added to the bottom of the water column during vertical mixing. Despite uncertainty in this value, we highlight the potential significance of this mechanism for DO dynamics. Overall, sediment resuspension likely occurs over all continental shelves affected by tropical cyclones, potentially impacting global cycles of marine DO and carbon.

5.
PLoS One ; 13(1): e0191509, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370224

RESUMEN

Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region's spring bloom by the end of the 21st century.


Asunto(s)
Clorofila/análisis , Interpretación Estadística de Datos , Fitoplancton/crecimiento & desarrollo , Regiones Árticas , Clima , Cambio Climático/estadística & datos numéricos , Simulación por Computador/estadística & datos numéricos , Convección , Eutrofización , Cubierta de Hielo/microbiología , Terranova y Labrador , Océanos y Mares , Fitoplancton/metabolismo , Agua de Mar/microbiología
6.
Nat Commun ; 7: 13429, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27834368

RESUMEN

The changes in extreme rainfall associated with a warming climate have drawn significant attention in recent years. Mounting evidence shows that sub-daily convective rainfall extremes are increasing faster than the rate of change in the atmospheric precipitable water capacity with a warming climate. However, the response of extreme precipitation depends on the type of storm supported by the meteorological environment. Here using long-term satellite, surface radar and rain-gauge network data and atmospheric reanalyses, we show that the observed increases in springtime total and extreme rainfall in the central United States are dominated by mesoscale convective systems (MCSs), the largest type of convective storm, with increased frequency and intensity of long-lasting MCSs. A strengthening of the southerly low-level jet and its associated moisture transport in the Central/Northern Great Plains, in the overall climatology and particularly on days with long-lasting MCSs, accounts for the changes in the precipitation produced by these storms.

7.
Nat Commun ; 7: 13670, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886199

RESUMEN

Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is ∼53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes.

8.
Proc Natl Acad Sci U S A ; 109(36): 14343-7, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22891298

RESUMEN

Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.


Asunto(s)
Tormentas Ciclónicas , Predicción/métodos , Modelos Teóricos , Salinidad , Movimientos del Agua , Simulación por Computador , Océanos y Mares , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...