Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 25(11): 2139-51, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14741629

RESUMEN

Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra-hydrophobic (>120 degrees ) surface. The chemical modifications using NaOH and AgNO(3) wet treatments completely inhibited bacterial adhesion of four strains of P. aeruginosa to both native and oxygen-pre-functionalized PVC, and efficiently prevented colonization over longer periods (72 h). Our results suggest that surface modifications that incorporate silver ions would be extremely effective at reducing bacterial colonization to medical devices.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Contaminación de Equipos/prevención & control , Intubación Intratraqueal/instrumentación , Cloruro de Polivinilo/química , Pseudomonas/citología , Plata/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , División Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Infección Hospitalaria/etiología , Infección Hospitalaria/prevención & control , Análisis de Falla de Equipo , Calor , Humanos , Intubación Intratraqueal/efectos adversos , Pseudomonas/efectos de los fármacos , Pseudomonas/fisiología , Infecciones por Pseudomonas/etiología , Infecciones por Pseudomonas/prevención & control , Ondas de Radio , Plata/química , Hidróxido de Sodio/química , Propiedades de Superficie
2.
Biomaterials ; 24(8): 1507-18, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12527292

RESUMEN

Pseudomonas aeruginosa pneumonia is a life threatening complication in mechanically ventilated patients that requires the ability of the bacteria to adhere to, and colonize the endotracheal intubation device. New strategies to prevent or reduce these nosocomial infections are greatly needed. We report here the study of a set of P. aeruginosa clinical isolates, together with specific mutants, regarding their adhesion on native and chemically modified poly(vinyl chloride) (PVC) surfaces from endotracheal intubation devices. The adhesion of the different strains to untreated PVC varied widely, correlating with several physico-chemical characteristics known to influence the attachment of bacteria to inert surfaces. The adhesion patterns were compared to the calculations obtained with the DLVO theory of colloidal stability. These results illustrate the importance of testing different clinical isolates when investigating bacterial adhesion. Oxygen plasma treatment of the PVC pieces yielded a hydrophilic surface and reduced the number of adhering bacteria by as much as 70%. This reduction is however unlikely to be sufficient to prevent P. aeruginosa colonization of endotracheal intubation devices.


Asunto(s)
Adhesión Bacteriana , Materiales Biocompatibles , Intubación Intratraqueal/efectos adversos , Cloruro de Polivinilo , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/patogenicidad , Adhesión Bacteriana/genética , Adhesión Bacteriana/fisiología , Materiales Biocompatibles/química , Biopelículas/crecimiento & desarrollo , Fenómenos Químicos , Química Física , Infección Hospitalaria/etiología , Infección Hospitalaria/prevención & control , Humanos , Técnicas In Vitro , Intubación Intratraqueal/instrumentación , Ensayo de Materiales , Mutación , Oxígeno , Cloruro de Polivinilo/química , Infecciones por Pseudomonas/etiología , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...