Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37769935

RESUMEN

A lectin was isolated from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii by affinity chromatography using mucin-sepharose matrix. The purity of the isolated lectin was confirmed in native gradient PAGE that showed a single protein band of ∼37.9 kDa. In SDS-PAGE also one band of ∼43.3 kDa molecular weight was observed that indicated the protein to be a monomer. The band from the SDS-PAGE gel was identified through mass spectrometry as chitinase 1. The purified chitinase (50 µg/ml) hemagglutinated rabbit RBCs and, mucin and glucose inhibited hemagglutination with minimum concentrations of 0.1 mg/ml and 100 mM, respectively. Bacterial agglutination with Gram -ve Vibrio harveyi, Aeromonas sobria and Escherichia coli was also observed by this protein. Thus, chitinase 1 showed lectin-like properties besides its chitin hydrolytic activity. In western blot with hepatopancreas sample, rabbit antiserum against chitinase 1 cross-reacted to two additional proteins namely, chitinase 1C and obstructor E (a chitin-binding protein, CBP), besides its specific reactivity. An indirect ELISA was developed with the antiserum to quantify chitinases/CBP in hepatopancreas and serum samples of M. rosenbergii. The assay was used in samples from juvenile prawns following V. harveyi challenge. At 72 h post-challenge, significantly higher levels of chitinases/CBP were quantified in the hepatopancreas of the challenged group (1.8 ± 0.2 mg/g tissue) compared to the control (1.2 ± 0.1 mg/g tissue). This study suggests that the chitinase 1 protein with lectin-like properties is possibly induced at the protein level and can be putatively involved in the innate immune response of M. rosenbergii.

2.
BMC Genomics ; 24(1): 94, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864388

RESUMEN

BACKGROUND: Dung beetles recycle organic matter through the decomposition of feces and support ecological balance. However, these insects are threatened by the indiscriminate use of agrochemicals and habitat destruction. Copris tripartitus Waterhouse (Coleoptera: Scarabaeidae), a dung beetle, is listed as a class-II Korean endangered species. Although the genetic diversity of C. tripartitus populations has been investigated through analysis of mitochondrial genes, genomic resources for this species remain limited. In this study, we analyzed the transcriptome of C. tripartitus to elucidate functions related to growth, immunity and reproduction for the purpose of informed conservation planning. RESULTS: The transcriptome of C. tripartitus was generated using next-generation Illumina sequencing and assembled de novo using a Trinity-based platform. In total, 98.59% of the raw sequence reads were processed as clean reads. These reads were assembled into 151,177 contigs, 101,352 transcripts, and 25,106 unigenes. A total of 23,450 unigenes (93.40%) were annotated to at least one database. The largest proportion of unigenes (92.76%) were annotated to the locally curated PANM-DB. A maximum of 5,512 unigenes had homologous sequences in Tribolium castaneum. Gene Ontology (GO) analysis revealed a maximum of 5,174 unigenes in the Molecular function category. Further, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a total of 462 enzymes were associated with established biological pathways. Based on sequence homology to known proteins in PANM-DB, representative immunity, growth, and reproduction-related genes were screened. Potential immunity-related genes were categorized into pattern recognition receptors (PRRs), the Toll-like receptor signaling pathway, the MyD88- dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related transcripts. Among PRRs, we conducted detailed in silico characterization of TLR-2, CTL, and PGRP_SC2-like. Repetitive elements such as long terminal repeats, short interspersed nuclear elements, long interspersed nuclear elements and DNA elements were enriched in the unigene sequences. A total of 1,493 SSRs were identified among all unigenes of C. tripartitus. CONCLUSIONS: This study provides a comprehensive resource for analysis of the genomic topography of the beetle C. tripartitus. The data presented here clarify the fitness phenotypes of this species in the wild and provide insight to support informed conservation planning.


Asunto(s)
Escarabajos , Tribolium , Animales , Escarabajos/genética , Perfilación de la Expresión Génica , Genes Mitocondriales , Transcriptoma , Reproducción
3.
Aquac Int ; 30(2): 1011-1035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153391

RESUMEN

Lectin protein families are diverse and multi-functional in crustaceans. The carbohydrate-binding domains (CRDs) of lectins recognize the molecular patterns associated with pathogens and orchestrate important roles in crustacean defense. In this study, two lectin homologs, a single CRD containing C-type lectin (CTL) and an L-type lectin (LTL) domain containing endoplasmic reticulum Golgi intermediate compartment 53 kDa protein (ERGIC-53) were identified from the freshwater prawn, Macrobrachium rosenbergii. The open reading frames of MrCTL and MrERGIC-53 were 654 and 1,515 bp, encoding polypeptides of 217 and 504 amino acids, respectively. Further, MrCTL showed a 20-amino acid transmembrane helix region and 10 carbohydrate-binding residues within the CRD. MrERGIC-53 showed a signal peptide region, a type-I transmembrane region, and a coiled-coil region at the C-terminus. Phylogenetic analysis revealed a close relationship between MrCTL and MrLectin and M. nipponense CTL (MnCTL), whereas MrERGIC-53 shared high sequence identity with Eriocheir sinensis ERGIC-53 and Penaeus vannamei MBL-1. A homology-based model predicted small carbohydrate-combining sites with a metal-binding site for ligand binding (Ca2+ binding site) in MrCTL and beta-sheets connected by short loops and beta-bends forming a dome-shaped beta-barrel structure representing the LTL domain of MrERGIC-53. Quantitative real-time polymerase chain reaction detected MrCTL and MrERGIC-53 transcripts in all examined tissues, with particularly high levels observed in hemocytes, hepatopancreas, and mucosal-associated tissues, such as the stomach and intestine. Further, the expression levels of MrCTL and MrERGIC-53 transcripts were remarkably altered after V. harveyi challenge, suggesting putative function in host innate immunity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10499-022-00845-3.

4.
Dev Comp Immunol ; 127: 104284, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34619174

RESUMEN

Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.


Asunto(s)
Tenebrio , Animales , Inmunidad Innata , Memoria Inmunológica , Insectos
5.
Mar Genomics ; 59: 100862, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33827771

RESUMEN

Charonia lampas sauliae (triton snails, triton shells or tritons; Mollusca, Caenogastropoda, Littorinimorpha, Ranellidae) is a marine species with a wide distribution. In Korea, this species is listed as vulnerable and is regionally protected as an endangered species. Here, we report the first comprehensive transcriptome dataset of C. lampas sauliae obtained using the Illumina HiSeq 2500 platform. In total, 97.68% of raw read sequences were processed as clean reads. Of the 577,478 contigs obtained, 146,026 sequences were predicted to contain coding regions. About 89.34% of all annotated unigene sequences showed homologous matches to protein sequences in PANM DB (Protostome database). Further, about one-third of the unigene sequences were annotated using the UniGene, Swiss-Prot, Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. In total, 190 enzymes were predicted under key metabolic pathways under stood through Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotation. Repetitive elements such as long terminal repeats (LTRs), short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and DNA elements were enriched in the unigene sequences. Among the identified transcripts were the channel proteins, some of which were blocked by tetrodotoxin, which is thought to be synthesized by symbiotic bacteria inhabiting the shells. In addition, conotoxin superfamily peptides, such as B-conotoxin, conotoxin superfamily T and alpha-conotoxin, were identified, which may have relevance to biomedical and evolutionary research. A transcriptome-wide search for polymorphic loci identified 21,568 simple sequence repeats (SSRs) in the unigene sequences. Most SSRs were dinucleotides, among which AC/GT was the dominant SSR type. The molecular and genetic resources revealed in this study could be utilized for investigations on the fitness of the species in the marine environment and sustainability in a changing habitat.


Asunto(s)
Neurotoxinas , Transcriptoma , Animales , Perfilación de la Expresión Génica , Marcadores Genéticos , Repeticiones de Microsatélite , Caracoles/genética
6.
Front Physiol ; 12: 758862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069235

RESUMEN

The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKß, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.

7.
Int J Biol Macromol ; 166: 45-53, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068623

RESUMEN

Streptococcus mutans is a gram-positive bacterium that causes tooth decay. The exopolyssacharides, mostly glucans synthesized by the bacterium are responsible for establishing pathogenic bio-films associated with dental caries disease. The regulatory immune and inflammatory reactions implicated by the synthesized glucans are still not clearly understood. In this study, a water-soluble exopolyssacharide (WSP) was extracted from culture of Str. mutans. The structural properties of WSP, [α-(1 â†’ 3, 1 â†’ 6)-D-glucan] were confirmed using Fourier-transform infrared spectroscopy and 13C-nuclear magnetic resonance spectroscopy. Furthermore, the effects of WSP on the global gene expression of the macrophage-like RAW 264.7 cells were analyzed using mRNA-seq analysis. Using Gene Ontology analysis, we compiled a total of 24,421 genes that were upregulated or downregulated by more than 5.0-fold and 0.3-fold, respectively. Most of the transcripts were grouped under immune response and inflammation-related gene categories. Among the 802 immunity-related genes analyzed, chemokine ligand 7 (Ccl7), interleukin-1ß (IL-1ß), interleukin-1α (IL-1α) and interleukin-6 (IL-6) were upregulated after WSP exposure. In addition, among a total of 344 genes related to inflammation, Ccl7, IL-1α and IL-6 were upregulated. These results suggest that [α-(1 â†’ 3, 1 â†’ 6)-D-glucan] from Str. mutans produces activates macrophages and may contribute to the immune and inflammatory response to periodontal disease.


Asunto(s)
Quimiocina CCL7/genética , Glucanos/farmacología , Interleucinas/genética , Polisacáridos Bacterianos/farmacología , Streptococcus mutans/química , Transcriptoma/efectos de los fármacos , Animales , Quimiocina CCL7/metabolismo , Interleucinas/metabolismo , Activación de Macrófagos , Ratones , Células RAW 264.7
8.
BMC Genomics ; 20(1): 154, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808280

RESUMEN

BACKGROUND: Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. RESULTS: The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. CONCLUSIONS: This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits.


Asunto(s)
Gastrópodos/genética , Animales , ADN/química , Gastrópodos/crecimiento & desarrollo , Gastrópodos/inmunología , Gastrópodos/metabolismo , Perfilación de la Expresión Génica , Inmunidad/genética , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Desarrollo de Músculos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Reproducción/genética , Análisis de Secuencia de ARN/normas , Homología de Secuencia de Ácido Nucleico , Procesos de Determinación del Sexo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...