Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31556, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845944

RESUMEN

The COVID-19 pandemic has underscored the importance of understanding the role of animals in the transmission of coronaviruses (CoVs) and their impact on human health. A One Health approach, integrating human, animal, and environmental health, is essential for effective CoVs control. Next-generation sequencing has played a pivotal role in identifying and monitoring the evolution of novel CoVs strains, like SARS-CoV-2. However, viral occurrence and diversity studies in environmental and animal samples are challenging because of the complexity of viral communities and low abundance of viruses in these samples. Target enrichment sequencing (TES) has emerged as a valuable tool for investigating viral families in challenging samples. This approach involves the specific capture and enrichment of viral genomes using sequence-specific probes, thereby enhancing the efficiency of detection and characterization. In this study, we aimed to develop and validate a TES panel to study CoVs in various complex environmental and animal derived samples. The results demonstrated the panel's effectiveness in capturing and sequencing a wide diversity of CoVs providing valuable insights into their abundance and host diversity in urban wastewater, farm animal corpses lixiviates and bat guano samples. In sewage samples, CoVs were detected solely when TES was employed while in guano samples, sequencing of CoVs species was achieved in 2 out of 4 samples showing an almost three-logarithmic increase in the number of reads obtained in comparison with the untargeted approach. For animal lixiviates, only the TES application enabled the acquisition of CoVs reads. The information obtained can significantly contribute to early detection, surveillance, and control measures for CoVs, including viral discovery and potential spillover events. Additionally, this sequencing panel shows potential for studying other significant viral families and monitoring viral diversity in different animal populations.

2.
Antibiotics (Basel) ; 12(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37998776

RESUMEN

Monitoring the antimicrobial susceptibility of last-resource antimicrobials for veterinary pathogens is urgently needed from a one-health perspective. The objective of this study was to analyze the antimicrobial susceptibility trends of Spanish porcine bacteria to quinolones, cephalosporins, and polymyxins. Isolates of Actinobacillus pleuropneumoniae, Pasteurella multocida, and Escherichia coli were isolated from sick pigs from 2019 to 2022. An antimicrobial susceptibility test was determined based on the minimal inhibitory concentration (MIC) following an internationally accepted methodology. The MIC categorization was based on distributing the range of MIC values in four categories, with category one being the most susceptible (lowest MIC value) and category four the least susceptible (highest MIC value). Moreover, clinical susceptibility (susceptible/non-susceptible) was also determined according to the CLSI and EUCAST clinical breakpoints. A logistic and multinomial logistic regression model was used to analyze the susceptibility data for dichotomized and categorized MIC data, respectively, for any pair of antimicrobial/microorganism. In general terms, the antimicrobial susceptibility of pig bacteria to these antimicrobials remained stable or increased in the last four years in Spain. In the case of A. pleuropneumoniae and quinolones, a significant temporal trend was observed where isolates from 2020 had significantly increased odds of being more susceptible than isolates from 2019. In the case of E. coli and polymyxins, a significant temporal trend was observed where isolates from 2020 and 2021 had significantly increased odds of being more susceptible than isolates from 2019 and 2020, respectively. Finally, significant odds of being less susceptible were only observed for cephalosporins and E. coli for 2020 versus 2019, stagnating for the rest of study period. These results provide sound data on critically important antimicrobials in swine medicine.

3.
Porcine Health Manag ; 9(1): 47, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858281

RESUMEN

BACKGROUND: Antimicrobial resistance is one of the most important health challenges in humans and animals. Antibiotic susceptibility determination is used to select the most suitable drug to treat animals according to its success probability following the European legislation in force for these drugs. We have studied the antibiotic susceptibility pattern (ASP) of Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) isolates, collected during the period 2019-2022 in Spain. ASP was measured by determining minimum inhibitory concentration using standardized laboratory methods and its temporal trend was determined by logistic regression analysis of non-susceptible/susceptible isolates using clinical breakpoints. RESULTS: It was not observed any significant temporal trends for susceptibility of Actinobacillus pleuropneumoniae to ceftiofur, florfenicol, sulfamethoxazole/trimethoprim, tulathromycin and tildipirosin during the study period (p > 0.05). Contrarily, a significant temporal trend (p < 0.05) was observed for quinolones (enrofloxacin and marbofloxacin), tetracyclines (doxycycline and oxyteracycline), amoxicillin, tiamulin and tilmicosin. On the other hand, it was not observed any significant temporal trends for susceptibility of Pasteurella multocida to quinolones (enrofloxacin and marbofloxacin), amoxicillin, ceftiofur, florfenicol and macrolides (tildipirosin, tulathromycin and tilmicosin) during the study period (p > 0.05). Contrarily, a significant temporal trend (p < 0.05) was observed for tetracyclines (oxyteracycline), tiamulin and sulfamethoxazole/trimethoprim. CONCLUSIONS: In general terms, pig pathogens (APP and PM) involved in respiratory diseases analysed herein appeared to remain susceptible or tended to increase susceptibility to antimicrobials over the study period (2019-2022), but our data clearly showed a different pattern in the evolution of antimicrobial susceptibility for each combination of drug and microorganism. Our results highlight that the evolution of antimicrobial susceptibility must be studied in a case-by-case situation where generalization for drug families and bacteria is not possible even for bacteria located in the same ecological niche.

4.
Vet Sci ; 8(11)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34822632

RESUMEN

The detection capacity of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) in tongues from dead animals in breeding herds (stillborns and piglets dying during the lactating period) and nursery farms (naturally dead animals) for PRRSV surveillance was evaluated. The samples were selected if pairs of serum and tongues were available from 2018 to 2020. Serum (pools of five) and exudate from tongues (one bag) were analyzed by PRRSV RT-PCR. The agreement between the serum sample procedure versus tongues exudate was assessed using a concordance test (Kappa statistic) at batch level. A total of 32 submissions, corresponding to 14 farms, had PRRSV diagnostic information for serum and tongues exudate. The overall agreement of batch classification as positive or negative, based on RT-PCR PRRSV results, between serum and tongue exudate of the 32 pairs was 76.9%. Cohen's Kappa was 0.55. The main discrepancy came from the presence of positive samples in tongues exudate and not in serum, suggesting that tongue exudate to monitor PRRSV seems to be more sensitive than serum. These results suggest that this sample procedure could be also used for PRRSV surveillance and monitoring.

5.
Front Vet Sci ; 7: 68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133377

RESUMEN

Novel techniques of data mining and time series analyses allow the development of new methods to analyze information relating to the health status of the swine population in near real-time. A swine health monitoring system based on the reporting of clinical events detected at farm level has been in operation in Northeastern Spain since 2012. This initiative was supported by swine stakeholders and veterinary practitioners of the Catalonia, Aragon, and Navarra regions. The system aims to evidence the occurrence of endemic diseases in near real-time by gathering data from practitioners that visited swine farms in these regions. Practitioners volunteered to report data on clinical events detected during their visits using a web application. The system allowed collection, transfer and storage of data on different clinical signs, analysis, and modeling of the diverse clinical events detected, and provision of reproducible reports with updated results. The information enables the industry to quantify the occurrence of endemic diseases on swine farms, better recognize their spatiotemporal distribution, determine factors that influence their presence and take more efficient prevention and control measures at region, county, and farm level. This study assesses the functionality of this monitoring tool by evaluating the target population coverage, the spatiotemporal patterns of clinical signs and presumptive diagnoses reported by practitioners over more than 6 years, and describes the information provided by this system in near real-time. Between January 2012 and March 2018, the system achieved a coverage of 33 of the 62 existing counties in the three study regions. Twenty-five percent of the target swine population farms reported one or more clinical events to the system. During the study period 10,654 clinical events comprising 14,971 clinical signs from 1,693 farms were reported. The most frequent clinical signs detected in these farms were respiratory, followed by digestive, neurological, locomotor, reproductive, and dermatological signs. Respiratory disorders were mainly associated with microorganisms of the porcine respiratory disease complex. Digestive signs were mainly related to colibacilosis and clostridiosis, neurological signs to Glässer's disease and streptococcosis, reproductive signs to PRRS, locomotor to streptococcosis and Glässer's disease, and dermatological signs to exudative epidermitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...