Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Control Release ; 372: 862-873, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906421

RESUMEN

Improving the activity of uricase and lowering its immunogenicity remain significant challenges in the enzyme replacement management of hyperuricemia and related inflammatory diseases. Herein, an immunogenicity-masking strategy based on engineered red blood cells (RBCs) was developed for effective uricase delivery against both hyperuricemia and gout. The dynamic membrane of RBCs enabled high resistance to protease inactivation and hydrogen peroxide accumulation. Benefiting from these advantages, a single infusion of RBC-loaded uricase (Uri@RBC) performed prolonged blood circulation and sustained hyperuricemia management. Importantly, RBCs masked the immunogenicity of uricase, leading to the maintenance of UA-lowering performance after repeated infusion through reduced antibody-mediated macrophage clearance. In an acute gout model, Uri@RBC profoundly alleviated joint edema and inflammation with minimal systemic toxicity. This study supports the employment of immunogenicity-masking tools for efficient and safe enzyme delivery, and this strategy may be leveraged to improve the usefulness of enzyme replacement therapies for managing a wide range of inflammatory diseases.


Asunto(s)
Eritrocitos , Gota , Hiperuricemia , Urato Oxidasa , Urato Oxidasa/administración & dosificación , Urato Oxidasa/uso terapéutico , Urato Oxidasa/inmunología , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/inmunología , Animales , Gota/inmunología , Eritrocitos/inmunología , Masculino , Humanos , Ácido Úrico/sangre , Ratones , Ratones Endogámicos C57BL
2.
Adv Sci (Weinh) ; 11(10): e2308866, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38196299

RESUMEN

Exploration of medicines for efficient and safe management of metabolic-associated fatty liver disease (MAFLD) remains a challenge. Obeticholic acid (OCA), a selective farnesoid X receptor agonist, has been reported to ameliorate injury and inflammation in various liver diseases. However, its clinical application is mainly limited by poor solubility, low bioavailability, and potential side effects. Herein a hepatic-targeted nanodrugs composed of OCA and cholesterol-lowering atorvastatin (AHT) with an ideal active pharmaceutical ingredient (API) content for orally combined treatment of MAFLD is created. Such carrier-free nanocrystals (OCAHTs) are self-assembled, not only improving the stability in gastroenteric environments but also achieving hepatic accumulation through the bile acid transporter-mediated enterohepatic recycling process. Orally administrated OCAHT outperforms the simple combination of OCA and AHT in ameliorating of liver damage and inflammation in both acetaminophen-challenged mice and high-fat diet-induced MAFLD mice with less systematic toxicity. Importantly, OCAHT exerts profoundly reverse effects on MAFLD-associated molecular pathways, including impairing lipid metabolism, reducing inflammation, and enhancing the antioxidation response. This work not only provides a facile bile acid transporter-based strategy for hepatic-targeting drug delivery but also presents an efficient and safe full-API nanocrystal with which to facilitate the practical translation of nanomedicines against MAFLD.


Asunto(s)
Ácido Quenodesoxicólico/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Atorvastatina/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA