Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1828(6): 1471-83, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23438363

RESUMEN

G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins with rich functional diversity. Signaling through the apelin receptor (AR or APJ) influences the cardiovascular system, central nervous system and glucose regulation. Pathophysiological involvement of apelin has been shown in atherosclerosis, cancer, human immunodeficiency virus-1 (HIV-1) infection and obesity. Here, we present the high-resolution nuclear magnetic resonance (NMR) spectroscopy-based structure of the N-terminus and first transmembrane (TM) segment of AR (residues 1-55, AR55) in dodecylphosphocholine micelles. AR55 consists of two disrupted helices, spanning residues D14-K25 and A29-R55(1.59). Molecular dynamics (MD) simulations of AR built from a hybrid of experimental NMR and homology model-based restraints allowed validation of the AR55 structure in the context of the full-length receptor in a hydrated bilayer. AR55 structural features were functionally probed using mutagenesis in full-length AR through monitoring of apelin-induced extracellular signal-regulated kinase (ERK) phosphorylation in transiently transfected human embryonic kidney (HEK) 293A cells. Residues E20 and D23 form an extracellular anionic face and interact with lipid headgroups during MD simulations in the absence of ligand, producing an ideal binding site for a cationic apelin ligand proximal to the membrane-water interface, lending credence to membrane-catalyzed apelin-AR binding. In the TM region of AR55, N46(1.50) is central to a disruption in helical character. G42(1.46), G45(1.49) and N46(1.50), which are all involved in the TM helical disruption, are essential for proper trafficking of AR. In summary, we introduce a new correlative NMR spectroscopy and computational biochemistry methodology and demonstrate its utility in providing some of the first high-resolution structural information for a peptide-activated GPCR TM domain.


Asunto(s)
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Receptores de Apelina , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Ligandos , Membrana Dobles de Lípidos , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/metabolismo , Micelas , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Transfección
2.
J Biomol NMR ; 46(4): 257-70, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20213252

RESUMEN

Biomolecular NMR spectroscopy frequently employs estimates of protein secondary structure using secondary chemical shift (Deltadelta) values, measured as the difference between experimental and random coil chemical shifts (RCCS). Most published random coil data have been determined in aqueous conditions, reasonable for non-membrane proteins, but potentially less relevant for membrane proteins. Two new RCCS sets are presented here, determined in dimethyl sulfoxide (DMSO) and chloroform:methanol:water (4:4:1 by volume) at 298 K. A web-based program, CS-CHEMeleon, has been implemented to determine the accuracy of secondary structure assessment by calculating and comparing Deltadelta values for various RCCS datasets. Using CS-CHEMeleon, Deltadelta predicted versus experimentally determined secondary structures were compared for large datasets of membrane and non-membrane proteins as a function of RCCS dataset, Deltadelta threshold, nucleus, localized parameter averaging and secondary structure type. Optimized Deltadelta thresholds are presented both for published and for the DMSO and chloroform:methanol:water derived RCCS tables. Despite obvious RCCS variations between datasets, prediction of secondary structure was consistently similar. Strikingly, predictive accuracy seems to be most dependent upon the type of secondary structure, with helices being the most accurately predicted by Deltadelta values using five different RCCS tables. We suggest caution when using Deltadelta-based restraints in structure calculations as the underlying dataset may be biased. Comparative assessment of multiple RCCS datasets should be performed, and resulting Deltadelta-based restraints weighted appropriately relative to other experimental restraints.


Asunto(s)
Ambiente , Resonancia Magnética Nuclear Biomolecular/métodos , Péptidos/química , Estructura Secundaria de Proteína , Solventes/química , Secuencia de Aminoácidos , Membrana Celular/química , Cloroformo/química , Dimetilsulfóxido/química , Metanol/química , Valor Predictivo de las Pruebas , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA