Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 200(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30249704

RESUMEN

The RIC (repair of iron clusters) protein of Escherichia coli is a di-iron hemerythrin-like protein that has a proposed function in repairing stress-damaged iron-sulfur clusters. In this work, we performed a bacterial two-hybrid screening to search for RIC-protein interaction partners in E. coli As a result, the DNA-binding protein from starved cells (Dps) was identified, and its potential interaction with RIC was tested by bacterial adenylate cyclase-based two-hybrid (BACTH) system, bimolecular fluorescence complementation, and pulldown assays. Using the activity of two Fe-S-containing enzymes as indicators of cellular Fe-S cluster damage, we observed that strains with single deletions of ric or dps have significantly lower aconitase and fumarase activities. In contrast, the ric dps double mutant strain displayed no loss of aconitase and fumarase activity with respect to that of the wild type. Additionally, while complementation of the ric dps double mutant with ric led to a severe loss of aconitase activity, this effect was no longer observed when a gene encoding a di-iron site variant of the RIC protein was employed. The dps mutant exhibited a large increase in reactive oxygen species (ROS) levels, but this increase was eliminated when ric was also inactivated. Absence of other iron storage proteins, or of peroxidase and catalases, had no impact on RIC-mediated redox stress induction. Hence, we show that RIC interacts with Dps in a manner that serves to protect E. coli from RIC protein-induced ROS.IMPORTANCE The mammalian immune system produces reactive oxygen and nitrogen species that kill bacterial pathogens by damaging key cellular components, such as lipids, DNA, and proteins. However, bacteria possess detoxifying and repair systems that mitigate these deleterious effects. The Escherichia coli RIC (repair of iron clusters) protein is a di-iron hemerythrin-like protein that repairs stress-damaged iron-sulfur clusters. E. coli Dps is an iron storage protein of the ferritin superfamily with DNA-binding capacity that protects cells from oxidative stress. This work shows that the E. coli RIC and Dps proteins interact in a fashion that counters RIC protein-induced reactive oxygen species (ROS). Altogether, we provide evidence for the formation of a new bacterial protein complex and reveal a novel contribution for Dps in bacterial redox stress protection.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Aconitato Hidratasa/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fumarato Hidratasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Oxidación-Reducción , Técnicas del Sistema de Dos Híbridos
2.
J Bacteriol ; 194(14): 3611-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22563051

RESUMEN

Mammalian cells of innate immunity respond to pathogen invasion by activating proteins that generate a burst of oxidative and nitrosative stress. Pathogens defend themselves from the toxic compounds by triggering a variety of detoxifying enzymes. Escherichia coli flavorubredoxin is a nitric oxide reductase that is expressed under nitrosative stress conditions. We report that in contrast to nitrosative stress alone, exposure to both nitrosative and oxidative stresses abolishes the expression of flavorubredoxin. Electron paramagnetic resonance (EPR) experiments showed that under these conditions, the iron center of the flavorubredoxin transcription activator NorR loses the ability to bind nitric oxide. Accordingly, triggering of the NorR ATPase activity, a requisite for flavorubredoxin activation, was impaired by treatment of the protein with the double stress. Studies of macrophages revealed that the contribution of flavorubredoxin to the survival of E. coli depends on the stage of macrophage infection and that the lack of protection observed at the early phase is related to inhibition of NorR activity by the oxidative burst. We propose that the time-dependent activation of flavorubredoxin contributes to the adaptation of E. coli to the different fluxes of hydrogen peroxide and nitric oxide to which the bacterium is subjected during the course of macrophage infection.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Óxido Nítrico/farmacología , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Macrófagos , Ratones , Factores de Transcripción/genética
3.
Biometals ; 22(1): 99-108, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19140014

RESUMEN

A key element in eukaryotic immune defenses against invading microbes is the production of reactive oxygen and nitrogen species. One of the main targets of these species are the iron-sulfur clusters, which are essential prosthetic groups that confer to proteins the ability to perform crucial roles in biological processes. Microbes have developed sophisticated systems to eliminate nitrosative and oxidative species and promote the repair of the damages inflicted. The Ric (Repair of Iron Centers) proteins constitute a novel family of microbial di-iron proteins with a widespread distribution among microbes, including Gram-positive and Gram-negative bacteria, protozoa and fungi. The Ric proteins are encoded by genes that are up-regulated by nitric oxide and hydrogen peroxide. Recent studies have shown that the active di-iron center is involved in the restoration of Fe-S clusters damaged by exposure to nitric oxide and hydrogen peroxide.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Secuencia de Aminoácidos , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hierro/química , Proteínas Hierro-Azufre/genética , Datos de Secuencia Molecular , Estructura Molecular , Familia de Multigenes , Oxidación-Reducción , Filogenia , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia
4.
J Bacteriol ; 190(6): 2004-13, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18203837

RESUMEN

Expression of two genes of unknown function, Staphylococcus aureus scdA and Neisseria gonorrhoeae dnrN, is induced by exposure to oxidative or nitrosative stress. We show that DnrN and ScdA are di-iron proteins that protect their hosts from damage caused by exposure to nitric oxide and to hydrogen peroxide. Loss of FNR-dependent activation of aniA expression and NsrR-dependent repression of norB and dnrN expression on exposure to NO was restored in the gonococcal parent strain but not in a dnrN mutant, suggesting that DnrN is necessary for the repair of NO damage to the gonococcal transcription factors, FNR and NsrR. Restoration of aconitase activity destroyed by exposure of S. aureus to NO or H2O2 required a functional scdA gene. Electron paramagnetic resonance spectra of recombinant ScdA purified from Escherichia coli confirmed the presence of a di-iron center. The recombinant scdA plasmid, but not recombinant plasmids encoding the complete Escherichia coli sufABCDSE or iscRSUAhscBAfdx operons, complemented repair defects of an E. coli ytfE mutant. Analysis of the protein sequence database revealed the importance of the two proteins based on the widespread distribution of highly conserved homologues in both gram-positive and gram-negative bacteria that are human pathogens. We provide in vivo and in vitro evidence that Fe-S clusters damaged by exposure to NO and H2O2 can be repaired by this new protein family, for which we propose the name repair of iron centers, or RIC, proteins.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Prueba de Complementación Genética , Peróxido de Hidrógeno/farmacología , Proteínas Hierro-Azufre/genética , Mutación , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Óxido Nítrico/farmacología , Filogenia , Plásmidos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...