Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz. j. med. biol. res ; 57: e13913, fev.2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1568972

RESUMEN

Considering the lack of consensus related to the impact of selective IL-6 receptor inhibition on bone remodeling and the scarcity of reports, especially on large bone defects, this study proposed to evaluate the biological impact of the selective inhibitor of interleukin-6 receptor (tocilizumab) in an experimental model of critical calvarial defect in rats. In this preclinical and in vivo study, 24 male Wistar rats were randomly divided into two groups (n=12/group): defect treated with collagen sponge (CG) and defect treated with collagen sponge associated with 2 mg/kg tocilizumab (TCZ). The defect in the parietal bone was created using an 8-mm diameter trephine drill. After 90 days, the animals were euthanized, and tissue samples (skull caps) were evaluated through micro-CT, histological, immunohistochemistry, cytokines, and RT-qPCR analyses. Tocilizumab reduced mononuclear inflammatory infiltration (P<0.05) and tumor necrosis factor (TNF)-α levels (P<0.01) and down-regulated tissue gene expression of BMP-2 (P<0.001), RUNX-2 (P<0.05), and interleukin (IL)-6 (P<0.05). Moreover, it promoted a stronger immunostaining of cathepsin and RANKL (P<0.05). Micro-CT and histological analyses revealed no impact on general bone formation (P>0.05). The bone cells (osteoblasts, osteoclasts, and osteocytes) in the defect area were similar in both groups (P>0.05). Tocilizumab reduced inflammatory cytokines, decreased osteogenic protein, and increased proteases in a critical bone defect in rats. Ninety days after the local application of tocilizumab in the cranial defect, we did not find a significant formation of bone tissue compared with a collagen sponge.

2.
Genet Mol Res ; 13(3): 6272-86, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25158254

RESUMEN

Abscisic acid-responsive element binding protein (AREB1) is a basic domain/leucine zipper transcription factor that binds to the abscisic acid (ABA)-responsive element motif in the promoter region of ABA-inducible genes. Because AREB1 is not sufficient to direct the expression of downstream genes under non-stress conditions, an activated form of AREB1 (AREB1ΔQT) was created. Several reports claim that plants overexpressing AREB1 or AREB1ΔQT show improved drought tolerance. In our studies, soybean plants overexpressing AREB1ΔQT were characterized molecularly, and the phenotype and drought response of three lines were accessed under greenhouse conditions. Under conditions of water deficit, the transformed plants presented a higher survival rate (100%) than those of their isoline, cultivar BR 16 (40%). Moreover, the transformed plants displayed better water use efficiency and had a higher number of leaves than their isoline. Because the transgenic plants had higher stomatal conductance than its isoline under well-watered conditions, it was suggested that the enhanced drought response of AREB1ΔQT soybean plants might not be associated with altered transpiration rates mediated by ABA-dependent stomatal closure. However, it is possible that the smaller leaf area of the transgenic plants reduced their transpiration and water use, causing delayed stress onset. The difference in the degree of wilting and percentage of survival between the 35S-AREB1ΔQT and wildtype plants may also be related to the regulation of genes that protect against dehydration because metabolic impairment of photosynthesis, deduced by an increasing internal CO2 concentration, was not observed in the transgenic plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Hojas de la Planta/genética , Agua/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sequías , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Elementos de Respuesta , Glycine max/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA