RESUMEN
Ants are significant structural and agricultural pests, generating a need for human-safe and effective insecticides for ant control. Erythritol, a sugar alcohol used in many commercial food products, reduces survival in diverse insect taxa including fruit flies, termites, and mosquitos. Erythritol also decreases longevity in red imported fire ants; however, its effects on other ant species and its ability to be transferred to naïve colony members at toxic doses have not been explored. Here, we show that erythritol decreases survival in Tetramorium immigrans Santschi (Hymenoptera: Formicidae) in a concentration-dependent manner. Access to ad-libitum water reduced the toxic effects of erythritol, but worker mortality was still increased over controls with ad-lib water. Foraging T. immigrans workers transferred erythritol at lethal levels to nest mates that had not directly ingested erythritol. Similar patterns of mortality following erythritol ingestion were observed in Formica glacialis Wheeler (Hymenoptera: Formicidae), Camponotus subarbatus Emery (Hymenoptera: Formicidae), and Camponotus chromaiodes Bolton (Hymenoptera: Formicidae). These findings suggest that erythritol may be a highly effective insecticide for several genera of ants. Erythritol's potential effectiveness in social insect control is augmented by its spread at lethal levels through ant colonies via social transfer (trophallaxis) between workers.
Asunto(s)
Hormigas , Insecticidas , Animales , Eritritol , Humanos , Control de InsectosRESUMEN
Damage from termite infestations is economically significant and control can be costly when requiring the widespread use of conventional insecticides. Erythritol, a polyalcohol sweetener that is safe for human consumption, causes increased mortality when ingested by some insects, indicating potential as a safe alternative insecticide. Here, we investigated the applicability of erythritol as a novel toxicant method of termite control. Eastern subterranean termites, Reticulitermes flavipes Kollar (Blattodea: Rhinotermitidae), were fed paper foods treated with increasing concentrations of erythritol and were assessed for mortality and bait consumption. Termite survival to 8 d (the duration of the experiment) significantly decreased as erythritol treatment concentration increased, indicating that the lethal effects of erythritol were concentration-dependent. Termites consumed erythritol-treated paper at all concentrations and did not display avoidance in choice assays, suggesting that erythritol may be practical for use as an ingestible bait. These results provide a basis for further development of erythritol as a safe alternative method of termite control.