Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169328, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104831

RESUMEN

In 2015, >50 million cubic meters of Fe mining tailings were released into the Doce River basin from the Fundão dam, raising the question of its consequences on the affected ecosystems. This study aimed to establish a mineralogical-(geo)chemical association of potentially toxic elements (PTEs) from Fe mining tailings from the Fundão dam, collected seven days after the failure, through a multidisciplinary approach combining assessment of the risk to human health, environmental geochemistry, and mineralogy. Thus, eleven tailings samples were collected with the support of the Brazilian Military Police Fire Department. Granulometry, magnetic measurements, optical microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and sequential chemical extraction of PTEs analyses were performed. Contamination indexes, assessment of risk to human health, and Pearson correlation were calculated using the results of sequential chemical extraction of PTEs. The predominance of goethite in Fe oxyhydroxide concentrates from the mud indicates that the major source of hematite may not be from tailings, but from pre-existing soils and sediments, and/or preferential dissolution of hematite in deep flooded zones of the tailings column of the Fundão dam. Moreover, the high correlation of most carcinogenic PTEs with their crystallographic variables indicates that goethite is the primary source of contaminants. Goethites from Fe mining tailings showed high specific surface area and Al-substitution, and due to their greater stability and reactivity, the impacts on PTE sorption phenomena and bioavailability may be maintained for long periods. However, their lower dissolution rate, and the consequent release of heavy metals would promote greater resilience for affected ecosystems, preventing significant PTE inputs under periodic reduction conditions. More specific studies, involving the crystallographic characteristics of Fe oxyhydroxides should be developed since they may provide another critical component of this set of complex and dynamic variables that interfere with the bioavailability of metals in ecosystems.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Metales Pesados , Minerales , Contaminantes Químicos del Agua , Humanos , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Brasil , Ríos/química
2.
Environ Monit Assess ; 195(5): 542, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017798

RESUMEN

Water clarity is a key parameter of aquatic ecosystems impacted by mining tailings. Tracking down tailings dispersion along the river basin requires a regional monitoring approach. The longitudinal fluvial connectivity, river-estuary-coastal ocean, and the lateral connectivity, river-floodplain-alluvial lakes are interconnected by hydrological flows, particularly during high fluvial discharge. The present study aims to track the dispersal of iron ore tailing spill, from the collapse of the Fundão dam (Mariana, MG, Brazil), on November 5, 2015, in the Lower Doce River Valley. A semi-empirical model of turbidity data, as a water clarity proxy, and multispectral remote sensing data (MSI Sentinel-2), based on different hydrological conditions and well-differentiated water types, yielded an accuracy of 92%. Five floods (> 3187m3 s-1) and five droughts (< 231m3 s-1) events occurred from 2013 to 2020. The flood of January 2016 occurred one month after the mining slurries reached the coast, intruding tailings on some alluvial and coastal plain lakes with highly turbid waters (> 400 NTU). A fluvial plume is formed in the inner shelf adjoining the river mouth on high flow. The dispersion of river plume was categorized as plume core (turbidity > 200 NTU), plume core and inner shelf waters (100-199 NTU), other shelf water (50-99 NTU), and offshore waters (< 50 NTU). Fluvial discharge and local winds are the main drivers for river plume dispersion and transport of terrigenous material along the coast. This work provides elements for evaluating the impact of mining tailings and an approach for remote sensing regional monitoring of surface water quality.


Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Contaminantes Químicos del Agua , Brasil , Ecosistema , Océanos y Mares , Ríos , Contaminantes Químicos del Agua/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-36231928

RESUMEN

Mercury is a metal present in the Earth's crust, but due to human contribution, its concentration can increase, causing environmental impacts to aquatic ecosystems, among others. The Reis Magos River Hydrographic Basin represents economic and socio-environmental importance for the state of Espírito Santo, Brazil. However, there are not many publications regarding the quality of water and sediments, so no data is reported concerning the total concentration of Hg. Thus, the present work aimed to evaluate the distribution of total Hg in water and sediments along this hydrographic basin. For a better inference, physicochemical parameters of the water were determined (temperature, pH, electrical conductivity, oxidation-reduction potential (ORP), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), and salinity), and in the sediments, the contents of matter organic matter, pH, carbonates and granulometry. Mercury determination was performed by Thermodecomposition and Amalgamation Atomic Absorption Spectrometry (TDA AAS) with a DMA-80 spectrometer. The Hg determined in the water was lower than the limit of quantification, 0.14 µg∙L-1, which is lower than the maximum limits recommended by world reference environmental agencies. In the sediment samples, the Hg found were below 170 µg∙kg-1, values below which there is less possibility of an adverse effect on the biota. However, when the degree of anthropic contribution was evaluated using the Geoaccumulation index (IGeo), the contamination factor (CF), and the ecological risk potential index (EF), there was evidence of moderate pollution. Thus, this highlighted the need for monitoring the region since climatic variations and physical-chemical parameters influence the redistribution of Hg between the water/sediment interface.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Brasil , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Humanos , Mercurio/análisis , Metales Pesados/análisis , Oxígeno/análisis , Ríos/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 806(Pt 1): 150493, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844302

RESUMEN

The effects of exposure to mining tailings on water quality and biota of tropical lacustrine ecosystems remain poorly understood. We tested the hypothesis that after mining tailing spills, shallow lakes should retain higher metal concentrations in comparison with deep lakes, which might contribute to differentiating species sorting and community structure of zooplankton in both ecosystems. Surveys were performed in 6 Brazilian lakes affected by the Fundão dam failure from October 2018 to September 2019. The shallow lakes showed higher values of turbidity (19.4 ± 12.9 NTU), conductivity (846.5 ± 1727.1 µS.cm-1), total organic carbon (11.6 ± 4.6 mg.L-1), total nitrogen (2688.7 ± 2215.6 µg.L-1), iron (2507.5 ± 726.9 µg.L-1), aluminum (419.9 ± 166.5 µg.L-1) and manganese (150.8 ± 146.2 µg.L-1) and lower zooplankton richness (9.2 ± 3.2) compared to the deep lakes (13.4 ± 3.0), which showed higher cyanobacteria density (84.7 103 ± 69.3 103 cel.mL-1). We recorded negative relationships between zooplankton richness and turbidity, conductivity, iron, zinc and vanadium, indicating that as well as morphometric characteristics of lakes (area and depth) have an important role in zooplankton richness, the coupling between metals and limnological variables represent decisive environmental filters for species sorting of zooplankton. The variation-partitioning analysis showed that limnological variables and metals explained zooplankton composition, highlighting that metals play major influence on zooplankton composition. We suggest that the shallowness of the lakes should had promoted often resuspension of mining tailings that caused increases in metal concentrations in water column. The results indicate that the shallow lakes presented higher vulnerability to mining tailings exposure than the deep lakes, which may have substantially contributed for differentiating zooplankton communities in both ecosystems. This study reveals the need for considering shallow lakes as priority target for conservation among freshwater ecosystems affected by mining tailings.


Asunto(s)
Lagos , Zooplancton , Animales , Brasil , Ecosistema , Monitoreo del Ambiente , Ríos
5.
Environ Monit Assess ; 193(11): 742, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34676453

RESUMEN

The analysis of multi-temporal and spatial trends of rainfall in a river basin is an essential approach for water resource planning and management approach. In this study, a combination of trend analysis and spatial-temporal variability of the rainfall for 1970-2017 was applied to examine rainfall distribution patterns in a coastal watershed, Santa Maria da Vitória River Basin (southeastern Brazil). Data from 42 meteorological stations were analyzed using kriging as a geostatistical tool for point data interpolation. Trends in rainfall were computed using the RClimDex package with eleven extreme climate indices. The results have shown spatial and temporal rainfall variability, with drought events becoming more persistent in recent years in the upper sector of the basin, where agricultural land use prevails. Water shortage may impact crops and threatening the water supply and hydropower production. Trend analysis suggests that the annual total wet-day precipitation (PRCPTOT) increases in the coastal section and decreases in the upper basin sector. Consecutive dry days (CDD) and consecutive wet days (CWD) show a strong positive tendency in the lower basin section, where the metropolitan area is located, flooding risks increase in response to positive trends of intensive short-term rainfall events. These results support managers developing and planning sustainability strategies to assure water security and subsidize adaptative responses to extreme hydrological events.


Asunto(s)
Clima , Monitoreo del Ambiente , Brasil , Sequías , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA