Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Parasitol ; 110(1): 54-58, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381122

RESUMEN

Two haemogregarine "species" names, Haemogregarina tarentannulari and Haemogregarina rawashi, were cited by Saoud et al. (1995) as having been described by Mohammed and Ramadan (1996, in press). However, the paper by Mohammed and Ramadan (1996) was never published and, therefore, these names and their authorities must be suppressed because they violate Chapter 3 (Criteria for Publication), Article 8 (What Constitutes Published Work) of the International Code of Zoological Nomenclature. The following new names are introduced to replace them based on the Principle of Priority (Chapter 6, Article 23, 23.1, and Chapter 11, Article 51, Recommendation 51E): Hepatozoon rawashi (Mohammed and Ramadan in Saoud, Ramadan, Mohammed and Fawzi, 1995) n. comb., with gamonts in the erythrocytes and meronts in the lungs and liver of the fan-footed gecko, Ptyodactylus hasselquisiti (Donndorff, 1798) from Egypt, and Haemogregarina tarentannulari (Mohammed and Ramadan in Saoud, Ramadan, Mohammed and Fawzi, 1995), with gamonts in the erythrocytes and meronts in the lungs and liver of the white-spotted wall gecko, Tarentola annularis (St. Hilaire, 1827) also from Egypt. This latter species was determined to be a junior synonym of Haemogregarina annularis El-Naffar, Mandour, and Mohammed 1991, which was later reassigned to the genus Hepatozoon based on their phylogenetic analysis of 18S rDNA gene sequences.


Asunto(s)
Eucoccidiida , Lagartos , Animales , Egipto , Filogenia , Hígado , ADN Ribosómico , Eucoccidiida/genética
2.
Poult Sci ; 103(4): 103519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359772

RESUMEN

We evaluated a single strain Bacillus subtilis BS-9 direct-fed microbial (BSDFM) isolated from camel dung in Eimeria challenged broiler chickens. Seven-hundred d-old Ross 708 male chicks were placed in pens (25 birds/pen) and allocated to 2 treatments (n = 14). From d 0 to 13, control pens received untreated water (-BSDFM), and 2 treated pens received water and 2 mL x 108 colony forming unit/bird/d (+BSDFM); daily water intake (WI) was recorded. On d 9, birds in half (+Eimeria) of pens per treatment received of 1 mL of Eimeria maxima and Eimeria acervulina oocysts orally, and the other half (-Eimeria) sterile saline solution. Birds had ad libitum access to feed and a water line from d 14. Feed intake (FI), body weight (BW) and mortality were recorded for calculating BW gain (BWG) and feed conversion ratio (FCR). On d 14 and 35, samples of birds were necropsied for organ weight and intestinal measurements. Excreta samples were collected from d 14 to 19 for oocyst count. There was no treatment effect (P > 0.05) on growth performance or WI on d 0 to 9. There were interactions between BSDFM and Eimeria on d 19 (P = 0.014) and 29 (P = 0.036) BW with unchallenged +BSDFM birds being heavier than birds in the other treatments. The main effects (P < 0.05) on d 10 to 35 FI, BW, and BWG were such that +BSDFM increased and Eimeria decreased (P < 0.01) these parameters. There was interaction (P = 0.022) between BSDFM and Eimeria on d 10 to 35 FCR such that the FCR of challenged -BSDFM birds was poor than that of unchallenged counterparts, but none differed with +BSDFM birds. There was an interaction (P = 0.039) between BSDFM and Eimeria on d 14 bursa weight with challenged birds exhibiting heavier bursa than unchallenged +BSDFM birds. Eimeria reduced (P = 0.01) and BSDFM (P = 0.002) increased the villi height to crypt depth ratio. Results showed that BSDFM supplementation via water can support the growth performance of broiler chickens challenged with Eimeria and may be a strategy to reduce adverse effects of coccidiosis.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Animales , Masculino , Pollos , Bacillus subtilis , Camelus , Tamaño de los Órganos , Dieta/veterinaria , Oocistos , Coccidiosis/veterinaria , Agua , Alimentación Animal/análisis , Suplementos Dietéticos
3.
J Parasitol ; 109(6): 603-614, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113274

RESUMEN

A commercial producer hatching and rearing chukar partridges (Alectoris chukar) in Ontario, Canada had flocks experiencing coccidiosis. Microscopic analysis of Eimeria species isolated from a field sample indicated the presence of 2 distinct oocyst morphotypes; the most abundant species was determined to be Eimeria chapmani, based on oocyst morphology and sequence-based genotyping, and the less abundant, second Eimeria sp. was an undescribed parasite. Oocysts of the unknown Eimeria sp. were large and oval-shaped; dimensions averaged 27.9 µm by 17.0 µm (shape index = 1.65 µm). Oocysts contained at least 1 polar granule and 4 almond-shaped sporocysts with average dimensions measuring 12.5 µm by 6.9 µm (shape index = 1.83). Each sporocyst featured a Stieda body, sub-Stieda body, and sporocyst residuum; a sporocyst contained 2 sporozoites that each possessed a small anterior refractile body and a larger posterior refractile body. Virtually all oocysts sporulated after 24 hr when suspended in potassium dichromate at room temperature (22 C) on a rotary platform. Experimental infections with various doses of oocysts demonstrated elevated parasite shedding from birds gavaged with higher challenge doses; fecundity generally decreased in heavier infections. The approximate prepatent period of the parasite was 4-5 days (unsporulated oocysts observed histologically at 90 hr postinfection and in feces by day 5) and patency lasted until day 12 postinfection. To characterize the endogenous development of the Eimeria sp., tissues were collected at 8 regions along the intestinal tract (including the ceca and rectum) every 6 hr throughout the estimated prepatent period. Parasites were observed to infect the descending and ascending duodenum, midjejunum, proximal and distal ileum, and the ceca. The endogenous stages identified included intracellular sporozoites, 3 generations of merogony, and gametogonic stages. Sequences of the mitochondrial genome (GenBank MW934555) and nuclear 18S ribosomal DNA (GenBank MW934259) were obtained using polymerase chain reaction amplification for Sanger sequencing, and these were unique from all published sequences on GenBank. Molecular data, in conjunction with the unique biology of the Eimeria sp. isolated from the chukar partridge flock, support that this coccidium is new to science.


Asunto(s)
Coccidiosis , Eimeria , Galliformes , Animales , Ontario/epidemiología , Coccidiosis/epidemiología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Oocistos/ultraestructura , Esporozoítos , Heces/parasitología
4.
Front Vet Sci ; 10: 1226298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496751

RESUMEN

Introduction: Coccidiosis caused by the Eimeria spp., an Apicomplexan protozoon, is a major intestinal disease that affects the poultry industry. Although most cases of coccidiosis are subclinical, Eimeria infections impair bird health and decrease overall performance, which can result in compromised welfare and major economic losses. Viable sporulated Eimeria oocysts are required for challenge studies and live coccidiosis vaccines. Potassium dichromate (PDC) is typically used as a preservative for these stocks during storage. Although effective and inexpensive, PDC is also toxic and carcinogenic. Chlorhexidine (CHX) salts may be a possible alternative, as this is a widely used disinfectant with less toxicity and no known carcinogenic associations. Methods: In vitro testing of CHX gluconate and CHX digluconate exhibited comparable oocyst integrity and viability maintenance with equivalent bacteriostatic and bactericidal activity to PDC. Subsequent use of CHX gluconate or digluconate-preserved Eimeria oocysts, cold-stored at 4°C for 5 months, as the inoculum also resulted in similar oocyst shedding and recovery rates when compared to PDC-preserved oocysts. Results and discussion: These data show that using 0.20% CHX gluconate could be a suitable replacement for PDC. Additionally, autofluorescence was used as a method to evaluate oocyst viability. Administration of artificially aged oocysts exhibiting >99% autofluorescence from each preserved treatment resulted in no oocyst output for CHX salt groups.

5.
Poult Sci ; 102(6): 102642, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37043956

RESUMEN

One method of prevention of coccidiosis in broiler chickens raised without antibiotics relies on coccidiosis vaccination. Live-coccidiosis vaccines carry the risk for pathogenic effects if the Eimeria species overcycle. However, all chicks must receive an appropriate dose of Eimeria oocysts to induce immunity and reduce the risk of adverse effects. At the hatchery, coccidiosis vaccines are administered topically to boxes of chicks by spray or gel-droplet application. Determining the volume of vaccine ingested by individual chicks could provide a means of evaluating the success of different application methods. For each of 2 mass application methods (spray, gel-droplet), we used 3 quantification methodologies to determine the amount of vaccine material ingested by chicks: total oocyst counts from feces collected 5- to 8-days postvaccination; and counts of either microsphere or fluorescein tracers recovered from the gastrointestinal tract 30-min postvaccination. For each quantification methodology, chicks vaccinated via spray or gel-droplet application were compared to chicks vaccinated via oral gavage using the same concentration of oocysts per mL for all groups. Chicks vaccinated via gel-droplet application shed 10-fold more oocysts than those vaccinated by spray application. Individual chick consumption of vaccine material using tracers also revealed that chicks ingested more material following gel-droplet application than spray application, although the magnitude of the difference varied based on quantification methodology. The results of this study suggest that all 3 quantification methodologies can be used to help validate and improve mass vaccine application methods to ensure optimal ingestion, and therefore, coccidiosis vaccination success.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Pollos , Oocistos , Microesferas , Enfermedades de las Aves de Corral/prevención & control , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Vacunas Atenuadas , Vacunación/veterinaria , Vacunación/métodos , Fluoresceínas , Ingestión de Alimentos
6.
J Wildl Dis ; 58(3): 599-607, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771938

RESUMEN

Black-footed ferrets (BFF; Mustela nigripes) are the only ferret species native to North America and have been listed as endangered since 1967. Starting in 1986, a multi-institutional effort has been breeding this species in captivity with successful reintroductions back into the wild. Enteric coccidiosis is recognized as a frequent cause of juvenile morbidity and mortality in captive breeding programs, and can result in substantial population losses. Despite this, little is known about the etiology of coccidiosis in BFF. Coccidia-positive fecal samples (n=12) and formalin-fixed paraffin-embedded intestinal tissues (n=11) were obtained from BFF in the Toronto Zoo (Ontario, Canada) and Louisville Zoo (Kentucky, USA) Species Survival Plan (SSP) populations. Oocyst morphometrics and sequence genotyping at three loci (nuclear 18S rDNA, mitochondrial cytochrome c oxidase subunit I and mitochondrial cytochrome c oxidase subunit III) were conducted to characterize the coccidium or coccidia responsible for disease outbreaks in these ferrets in different age classes and years. Results suggest that a single Eimeria species, E. ictidea, was the cause of enteric coccidiosis in both SSP populations in both juvenile and adult age classes in all years evaluated. Wider research is indicated to determine whether these findings are representative of the broader captive and wild BFF populations.


Asunto(s)
Coccidiosis , Eimeria , Animales , Coccidiosis/epidemiología , Coccidiosis/veterinaria , Heces , Hurones , Ontario
7.
Acta Parasitol ; 67(3): 1162-1171, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35543958

RESUMEN

PURPOSE: Members of the genus Isospora commonly infect a wide variety of wild birds. By combining morphometric and genetic data, we are able to differentiate and describe a new apicomplexan parasite, Isospora picoflavae n. sp., from the Northern Yellow-shafted Flicker (Colaptes auratus luteus) in Ontario, Canada. METHODS: Unsporulated oocysts were observed in intestinal contents obtained during necropsy; these oocysts completed exogenous sporulation within 7 days at room temperature. Complete nuclear 18S rDNA and complete mitochondrial genome sequences were obtained from this previously undescribed Isospora sp. to compare with related coccidia. RESULTS: Sporulated oocysts were subspherical in shape measuring an average of 22.7 × 21.7 µm (n = 53; mean shape index 1.05) containing a near-spherical polar granule. Sporocysts were ovoidal to ellipsoidal in shape, measuring an average size of 17.0 × 10.5 µm (n = 9; mean shape index 1.62). Sporocyst residuum was concentrated in an irregular, spherical mass in the middle of each sporocyst. The isolated oocysts differed morphologically from other Isospora species reported to infect members of the family Picidae. Based on phylogenetic analyses using either combined nuclear 18S rDNA and mitochondrial cytochrome c oxidase I (COI) sequences or complete mitochondrial genome sequences, this Isospora sp. n. isolated from the Northern Flicker grouped within a clade containing Isospora species described from various passeriform hosts. CONCLUSION: Based on combined morphological and molecular data, the oocysts found in the gastrointestinal contents of Colaptes auratus luteus represent a new species of Isospora named herein as Isospora picoflavae n. sp.


Asunto(s)
Enfermedades de las Aves , Isospora , Isosporiasis , Passeriformes , Animales , Enfermedades de las Aves/parasitología , ADN Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Heces/parasitología , Isosporiasis/parasitología , Ontario , Oocistos , Passeriformes/parasitología , Filogenia , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética
8.
Poult Sci ; 101(6): 101839, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35421815

RESUMEN

The effect of Eimeria challenge on standardized ileal digestibility (SID) of amino acids (AA) in major poultry feed ingredients fed to broiler chickens was determined. A total of 840 male 9-day-old Ross 708 chicks were placed in 84 cages (10 birds/cage) and allocated to either a nitrogen-free diet (NFD) or one of the 6 test diets based on a single or mixture of feed ingredients as the sole source of AA (n = 12). Test diets were: 1) corn, 2) wheat, 3) soybean meal (SBM), 4) pork meal (PM), 5) corn, SBM, and PM (CSP), and 6) wheat, SBM, and PM (WSP). On d 10, birds in 6 cages/diet were orally gavaged with 1 mL of E. acervulina and E. maxima mixture and the other 6 cages with sham. On d 15, birds were bled for plasma AA and necropsied for intestinal lesion scores and ileal digesta samples. Challenge decreased (P < 0.05) plasma concentration of Arg, His, Thr, Asp, Gln, and Tyr and increased concentration of Lys, Ile, Leu, and Val. There was a diet by challenge interaction (P < 0.05) on intestinal lesion scores with birds fed mixed diets exhibiting more severe lesions than birds fed single ingredient diets. Diet by challenge interacted (P < 0.05) on ileal total endogenous flow (ITEF) of AA except for Arg, Met, Ala, Asp, and Cys, such that challenged birds fed the mixed, particularly WSP, had higher ITEF of AA compared to single ingredients birds. Diet and challenge interaction (P < 0.05) was observed for SID of Arg, Thr, Val, Glu, and Gly. Challenge decreased (P < 0.05) SID of most AA except for Met, Asp, and Cys with the largest impact seen on Lys, His, Ser, and Thr. With exception of Arg, Thr, Asp, and Cys, birds fed mixed diets had higher (P < 0.05) SID values compared to birds fed single ingredients. In conclusion, Eimeria reduced plasma availability and ileal digestibility of most AA. However, challenge interaction with diet composition on SID of some AA warrants further investigations.


Asunto(s)
Eimeria , Animales , Masculino , Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos/metabolismo , Dieta/veterinaria , Digestión , Íleon/metabolismo , Glycine max/química
9.
Microorganisms ; 10(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35208901

RESUMEN

Cyclospora cayetanensis is an emerging foodborne parasite that causes cyclosporiasis, an enteric disease of humans. Domestically acquired outbreaks have been reported in Canada every spring or summer since 2013. To date, investigations into the potential sources of infection have relied solely on epidemiological data. To supplement the epidemiological data with genetic information, we genotyped 169 Canadian cyclosporiasis cases from stool specimens collected from 2010 to 2021 using an existing eight-marker targeted amplicon deep (TADS) scheme specific to C. cayetanensis as previously described by the US Centers for Disease Control and Prevention (CDC). This is the first study to genotype Canadian Cyclospora cayetanensis isolates, and it focuses on evaluating the genotyping performance and genetic clustering. Genotyping information was successfully collected with at least part of one of the markers in the TADS assay for 97.9% of specimens, and 81.1% of cyclosporiasis cases met the minimum requirements to genetically cluster into 20 groups. The performance of the scheme suggests that examining cyclosporiasis cases genetically will be a valuable tool for supplementing epidemiological outbreak investigations and to minimize further infections. Further research is required to expand the number of discriminatory markers to improve genetic clustering.

10.
Microbiol Resour Announc ; 11(2): e0107221, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35112896

RESUMEN

The apicomplexan parasite Cyclospora cayetanensis causes foodborne gastrointestinal disease in humans. Here, we report the first hybrid assembly for C. cayetanensis, which uses both Illumina MiSeq and Oxford Nanopore Technologies MinION platforms to generate genomic sequence data. The final genome assembly consists of 44,586,677 bases represented in 313 contigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA