Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(7): e0236123, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38842338

RESUMEN

Lytic enzymes, or lysins for short, break down peptidoglycan and interrupt the continuity of the cell wall, which, in turn, causes osmotic lysis of the bacterium. Their ability to destroy bacteria from within makes them promising antimicrobial agents that can be used as alternatives or supplements to antibiotics. In this paper, we briefly summarize basic terms and concepts used to describe lysin sequences and delineate major lysin groups. More importantly, we describe the domain repertoire found in lysins and critically review bioinformatic tools or databases which are used in studies of these enzymes (with particular emphasis on the repositories of Hidden Markov models). Finally, we present a novel comprehensive, meticulously curated set of lysin-related family and domain models, sort them into clusters that reflect major families, and demonstrate that the selected models can be used to efficiently search for new lysins.


Asunto(s)
Pared Celular , Biología Computacional , Pared Celular/metabolismo , Pared Celular/química , Bacterias/genética , Bacterias/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Nat Commun ; 15(1): 495, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263397

RESUMEN

Bacteriophages are widely recognised as rapidly evolving biological entities. However, knowledge about ancient bacteriophages is limited. Here, we analyse DNA sequence datasets previously generated from ancient palaeofaeces and human gut-content samples, and identify an ancient phage genome nearly identical to present-day Mushuvirus mushu, a virus that infects gut commensal bacteria. The DNA damage patterns of the genome are consistent with its ancient origin and, despite 1300 years of evolution, the ancient Mushuvirus genome shares 97.7% nucleotide identity with its modern counterpart, indicating a long-term relationship between the prophage and its host. In addition, we reconstruct and authenticate 297 other phage genomes from the last 5300 years, including those belonging to unknown families. Our findings demonstrate the feasibility of reconstructing ancient phage genome sequences, thus expanding the known virosphere and offering insights into phage-bacteria interactions spanning several millennia.


Asunto(s)
Bacteriófagos , Humanos , Profagos , Daño del ADN , Conocimiento , Nucleótidos
3.
Cells ; 12(15)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37566076

RESUMEN

Rothia is an opportunistic pathogen, particularly life-threatening for the immunocompromised. It is associated with pneumonia, endocarditis, peritonitis and many other serious infections, including septicemia. Of note, Rothia mucilaginousa produces metabolites that support and increase overgrowth of Pseudomonas aeruginosa, one of the ESKAPE bacteria. Endolysins are considered as antibacterial enzymes derived from bacteriophages that selectively and efficiently kill susceptible bacteria without harming human cells or the normal microbiome. Here, we applied a computational analysis of metagenomic sequencing data of the gastric mucosa phageome extracted from human patients' stomach biopsies. A selected candidate anti-Rothia sequence was produced in an expression system, purified and confirmed as a Rothia mucilaginosa- and Rothia dentocariosa-specific endolysin PolaR, able to destroy bacterial cells even when aggregated, as in a biofilm. PolaR had no cytotoxic or antiproliferative effects on mammalian cells. PolaR is the first described endolysin selectively targeting Rothia species, with a high potential to combat infections caused by Rothia mucilaginosa and Rothia dentocariosa, and possibly other bacterial groups. PolaR is the first antibacterial enzyme selected from the gastric mucosa phageome, which underlines the biological complexity and probably underestimated biological role of the phageome in the human gastric mucosa.


Asunto(s)
Bacteriófagos , Micrococcaceae , Animales , Humanos , Micrococcaceae/metabolismo , Bacterias , Antibacterianos/farmacología , Antibacterianos/metabolismo , Mamíferos
4.
Front Microbiol ; 14: 1120147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998400

RESUMEN

Bacteriophages from the Bastillevirinae subfamily (Herelleviridae family) have proven to be effective against bacteria from the Bacillus genus including organisms from the B. cereus group, which cause food poisoning and persistent contamination of industrial installations. However, successful application of these phages in biocontrol depends on understanding of their biology and stability in different environments. In this study, we isolated a novel virus from garden soil in Wroclaw (Poland) and named it 'Thurquoise'. The genome of that phage was sequenced and assembled into a single continuous contig with 226 predicted protein-coding genes and 18 tRNAs. The cryo-electron microscopy revealed that Thurquoise has complex virion structure typical for the Bastillevirinae family. Confirmed hosts include selected bacteria from the Bacillus cereus group-specifically B. thuringiensis (isolation host) and B. mycoides, but susceptible strains display different efficiency of plating (EOP). The eclipse and latent periods of Thurquoise in the isolation host last ~ 50 min and ~ 70 min, respectively. The phage remains viable for more than 8 weeks in variants of the SM buffer with magnesium, calcium, caesium, manganese or potassium and can withstand numerous freeze-thaw cycles if protected by the addition of 15% glycerol or, to a lesser extent, 2% gelatine. Thus, with proper buffer formulation, this virus can be safely stored in common freezers and refrigerators for a considerable time. The Thurquoise phage is the exemplar of a new candidate species within the Caeruleovirus genus in the Bastillevirinae subfamily of the Herelleviridae family with a genome, morphology and biology typical for these taxa.

5.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780432

RESUMEN

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Asunto(s)
Bacteriófagos , Virus , Humanos , Metagenómica , Filogenia , Virus/genética
6.
Arch Virol ; 168(2): 74, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683075

RESUMEN

This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established. In addition, one order, 22 families, 30 subfamilies, 321 genera, and 862 species were newly created, promoted, or moved.


Asunto(s)
Bacteriófagos , Caudovirales , Siphoviridae , Virus , Humanos , Virus/genética , Myoviridae
7.
Front Microbiol ; 13: 946070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910653

RESUMEN

Understanding phage-host relationships is crucial for the study of virus biology and the application of phages in biotechnology and medicine. However, information concerning the range of hosts for bacterial and archaeal viruses is scattered across numerous databases and is difficult to obtain. Therefore, here we present PHD (Phage & Host Daily), a web application that offers a comprehensive, up-to-date catalog of known phage-host associations that allows users to select viruses targeting specific bacterial and archaeal taxa of interest. Our service combines the latest information on virus-host interactions from seven source databases with current taxonomic classification retrieved directly from the groups and institutions responsible for its maintenance. The web application also provides summary statistics on host and virus diversity, their pairwise interactions, and the host range of deposited phages. PHD is updated daily and available at http://phdaily.info or http://combio.pl/phdaily.

8.
BMC Biol ; 19(1): 223, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625070

RESUMEN

BACKGROUND: Characterizing phage-host interactions is critical to understanding the ecological role of both partners and effective isolation of phage therapeuticals. Unfortunately, experimental methods for studying these interactions are markedly slow, low-throughput, and unsuitable for phages or hosts difficult to maintain in laboratory conditions. Therefore, a number of in silico methods emerged to predict prokaryotic hosts based on viral sequences. One of the leading approaches is the application of the BLAST tool that searches for local similarities between viral and microbial genomes. However, this prediction method has three major limitations: (i) top-scoring sequences do not always point to the actual host; (ii) mosaic virus genomes may match to many, typically related, bacteria; and (iii) viral and host sequences may diverge beyond the point where their relationship can be detected by a BLAST alignment. RESULTS: We created an extension to BLAST, named Phirbo, that improves host prediction quality beyond what is obtainable from standard BLAST searches. The tool harnesses information concerning sequence similarity and bacteria relatedness to predict phage-host interactions. Phirbo was evaluated on three benchmark sets of known virus-host pairs, and it improved precision and recall by 11-40 percentage points over currently available, state-of-the-art, alignment-based, alignment-free, and machine-learning host prediction tools. Moreover, the discriminatory power of Phirbo for the recognition of virus-host relationships surpassed the results of other tools by at least 10 percentage points (area under the curve = 0.95), yielding a mean host prediction accuracy of 57% and 68% at the genus and family levels, respectively, and drops by 12 percentage points when using only a fraction of viral genome sequences (3 kb). Finally, we provide insights into a repertoire of protein and ncRNA genes that are shared between phages and hosts and may be prone to horizontal transfer during infection. CONCLUSIONS: Our results suggest that Phirbo is a simple and effective tool for predicting phage-host relationships.


Asunto(s)
Bacteriófagos , Virus , Bacterias/genética , Bacteriófagos/genética , Genoma Viral , Aprendizaje Automático , Virus/genética
9.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34417873

RESUMEN

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Asunto(s)
Virus de Archaea/clasificación , Bacteriófagos/clasificación , Sociedades Científicas/organización & administración , Archaea/virología , Bacterias/virología
10.
Int J Biol Macromol ; 189: 678-689, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34390750

RESUMEN

Thaumatin-like proteins (TLPs, osmotins) form a protein family which shares a significant sequence homology to the sweet-tasting thaumatin from the plant Thaumatococcus daniellii. TLPs are not sweet-tasting and are involved in response to biotic stresses and developmental processes. Recently it has been shown using a proteomic approach that the tuber extract from Corydalis cava (Papaveraceae) contains a TLP protein. The aim of this work was to characterize the structure and expression of TLP from C. cava tubers. The results obtained using a PCR approach with degenerate primers demonstrated a coding sequence of a novel protein, named CcTLP1. It consists of 225 aa, has a predicted molecular weight of 24.2 kDa (NCBI GenBank accession no. KJ513303) and has 16 strictly conserved cysteine residues, which form 8 disulfide bridges and stabilize the 3D structure. CcTLP1 may be classified into class IX of plant TLPs. The highest CcTLP1 expression levels were shown by qPCR in the stem of the plant compared to other organs and in the medium-size plants compared to other growth phases. The results confirm that CcTLP1 is expressed during plant growth and development until flowering, with a possible defensive function against different stress conditions.


Asunto(s)
Corydalis/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Corydalis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Funciones de Verosimilitud , Modelos Moleculares , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Dominios Proteicos , Espectrometría de Masas en Tándem , Transcripción Genética
11.
Patterns (N Y) ; 2(7): 100274, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34286299

RESUMEN

Culture-independent approaches have recently shed light on the genomic diversity of viruses of prokaryotes. One fundamental question when trying to understand their ecological roles is: which host do they infect? To tackle this issue we developed a machine-learning approach named Random Forest Assignment of Hosts (RaFAH), that uses scores to 43,644 protein clusters to assign hosts to complete or fragmented genomes of viruses of Archaea and Bacteria. RaFAH displayed performance comparable with that of other methods for virus-host prediction in three different benchmarks encompassing viruses from RefSeq, single amplified genomes, and metagenomes. RaFAH was applied to assembled metagenomic datasets of uncultured viruses from eight different biomes of medical, biotechnological, and environmental relevance. Our analyses led to the identification of 537 sequences of archaeal viruses representing unknown lineages, whose genomes encode novel auxiliary metabolic genes, shedding light on how these viruses interfere with the host molecular machinery. RaFAH is available at https://sourceforge.net/projects/rafah/.

12.
13.
J Gen Virol ; 101(4): 362-363, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32022658

RESUMEN

Members of the family Herelleviridae are bacterial viruses infecting members of the phylum Firmicutes. The virions have myovirus morphology and virus genomes comprise a linear dsDNA of 125-170 kb. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herelleviridae, which is available at ictv.global/report/herelleviridae.


Asunto(s)
Bacteriófagos/genética , Firmicutes/virología , Genoma Viral , Filogenia , Virión/ultraestructura , Replicación Viral
14.
Syst Biol ; 69(1): 110-123, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127947

RESUMEN

Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.


Asunto(s)
Caudovirales/clasificación , Filogenia , Caudovirales/genética , Clasificación , Genoma Viral/genética
15.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31609415

RESUMEN

Microcystins produced by several toxic cyanobacterial strains constitute an important problem for public health. Bacterial degradation of these hepatotoxins may play an important role in natural ecosystems, however the nature of the process is very poorly understood. The aim of our study was to investigate the possible interactions between cyanotoxin producers and degraders. Samples collected from 24 water bodies in western Poland were analysed to determine the chemo-physical parameters, phytoplankton content, bacterial community structure and microcystin-biodegradation potency. A redundancy analysis identified a positive correlation between the capacity of a community to degrade microcystin LR (MC-LR) and temperature, pH, chlorophyll a concentration and the abundance of MC-producers. The relative abundance of classes F38, TM7-3 and the order WCHB1-81c (Actinobacteria) was significantly higher in the lakes with MC-biodegradation potency. Some specific bacterial genera belonging to Acidobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes and TM7 were closely correlated with the occurrence of Microcystis spp. Furthermore, the MC biodegradation process was connected with the same bacterial groups. Thus, our approach allowed us to provide a broader picture of some specific relations between microcystin producers and potential microcystin degraders. A more comprehensive analysis of the existing correlations may be helpful in our understanding of natural mechanisms of MC elimination using bacteria such as MC-degraders.


Asunto(s)
Toxinas Bacterianas/metabolismo , Biodegradación Ambiental , Cianobacterias/metabolismo , Microcistinas/metabolismo , Microbiología del Agua , Clorofila A/metabolismo , Ecosistema , Lagos/microbiología , Toxinas Marinas , Polonia , Temperatura
16.
PLoS One ; 13(10): e0205995, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30339682

RESUMEN

Only 3% of phage genomes in NCBI nucleotide database represent phages that are active against Streptococcus sp. With the aim to increase general awareness of phage diversity, we isolated two bacteriophages, Str01 and Str03, active against health-threatening Group A Streptococcus (GAS). Both phages are members of the Siphoviridae, but their analysis revealed that Str01 and Str03 do not belong to any known genus. We identified their structural proteins based on LC-ESI29 MS/MS and list their basic thermal stability and physico-chemical features including optimum pH. Annotated genomic sequences of the phages are deposited in GenBank (NCBI accession numbers KY349816 and KY363359, respectively).


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Streptococcus pyogenes/virología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Genes Virales , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Filogenia , Temperatura , Proteínas Virales/metabolismo , Virión/genética
17.
Sci Rep ; 8(1): 5091, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572482

RESUMEN

Bacteriophage therapeutic development will clearly benefit from understanding the fundamental dynamics of in vivo phage-bacteria interactions. Such information can inform animal and human trials, and much can be ascertained from human cell-line work. We have developed a human cell-based system using Clostridium difficile, a pernicious hospital pathogen with limited treatment options, and the phage phiCDHS1 that effectively kills this bacterium in liquid culture. The human colon tumorigenic cell line HT-29 was used because it simulates the colon environment where C. difficile infection occurs. Studies on the dynamics of phage-bacteria interactions revealed novel facets of phage biology, showing that phage can reduce C. difficile numbers more effectively in the presence of HT-29 cells than in vitro. Both planktonic and adhered Clostridial cell numbers were successfully reduced. We hypothesise and demonstrate that this observation is due to strong phage adsorption to the HT-29 cells, which likely promotes phage-bacteria interactions. The data also showed that the phage phiCDHS1 was not toxic to HT-29 cells, and phage-mediated bacterial lysis did not cause toxin release and cytotoxic effects. The use of human cell lines to understand phage-bacterial dynamics offers valuable insights into phage biology in vivo, and can provide informative data for human trials.


Asunto(s)
Bacteriófagos/fisiología , Clostridioides difficile/virología , Infecciones por Clostridium/microbiología , Colon/microbiología , Células HT29 , Interacciones Huésped-Patógeno , Humanos , Terapia de Fagos
19.
Arch Virol ; 162(9): 2907-2911, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28551853

RESUMEN

In this paper, we describe two independent isolates of a new member of the subfamily Autographivirinae, Pseudomonas phage KNP. The type strain (KNP) has a linear, 40,491-bp-long genome with GC content of 57.3%, and 50 coding DNA sequences (CDSs). The genome of the second strain (WRT) contains one CDS less, encodes a significantly different tail fiber protein and is shorter (40,214 bp; GC content, 57.4%). Phylogenetic analysis indicates that both KNP and WRT belong to the genus T7virus. Together with genetically similar Pseudomonas phages (gh-1, phiPSA2, phiPsa17, PPPL-1, shl2, phi15, PPpW-4, UNO-SLW4, phiIBB-PF7A, Pf-10, and Phi-S1), they form a divergent yet coherent group that stands apart from the T7-like viruses (sensu lato). Analysis of the diversity of this group and its relatedness to other members of the subfamily Autographivirinae led us to the conclusion that this group might be considered as a candidate for a new genus.


Asunto(s)
Genoma Viral , Fagos Pseudomonas/genética , Fagos Pseudomonas/aislamiento & purificación , Pseudomonas fluorescens/virología , Secuencia de Bases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...