Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 68(6): 1061-1072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38427095

RESUMEN

Pelotherapy treatments in thermal spas, which utilize peloids composed of clay minerals mixed with saltwater or mineral-medicinal water, can have various effects on spa users, ranging from therapeutic to potential adverse reactions. Despite the widespread use of peloids, comprehensive information on the penetration and permeation of essential and potentially toxic elements into deeper layers of the skin during pelotherapy is limited. Understanding the concentrations of these elements is crucial for evaluating therapeutic benefits and ensuring safety. This study investigates the in vitro availability and absorption of calcium, magnesium, and potentially toxic elements in two peloids, considering their formulation matrix. To replicate the pelotherapy methodology, an in vitro permeation experiment was conducted using a vertical diffusion chamber (Franz cells) and a biological system with human skin membranes from five Caucasian women, age range between 25 and 51 years. The experiment involved heating the peloids to 45℃. The results emphasize the possible transport properties of chemical elements in peloids, providing valuable information related to potential therapeutic efficacy and safety considerations. Despite no apparent differences between peloids' chemical composition, the method identified permeation variations among chemical elements. The methodology employed in this study adheres to the guidelines outlined by OECD for analyzing skin absorption through an in vitro approach. Furthermore, it aligns with the associated OECD guidance document for conducting skin absorption studies. The replicability of this methodology not only facilitates the analysis of peloids pre-formulation but also provides a robust means to evaluate the effectiveness of therapeutic elements during topical administration, particularly those with potential toxicity concerns.


Asunto(s)
Calcio , Magnesio , Absorción Cutánea , Humanos , Magnesio/farmacocinética , Magnesio/metabolismo , Proyectos Piloto , Adulto , Femenino , Calcio/farmacocinética , Calcio/análisis , Persona de Mediana Edad , Peloterapia , Piel/metabolismo , Técnicas In Vitro
2.
Environ Geochem Health ; 45(8): 6621-6641, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37341890

RESUMEN

The risks associated with the use of peloids in thermal centers, spas, or at home, must be tested to develop appropriate safety guidelines for peloids formulations and the release of substances of high concern. Additionally, the beneficial effects of some elements on human health should be assessed to aid in interpreting the therapeutic action and effectiveness of pelotherapy on dermatological or osteomuscular disorders. Therefore, a methodology was developed to better understand the biogeochemical behavior of the elements in formulated peloids. Two peloids were formulated with the same clay and two different sulfurous mineral-medicinal waters for 90 days, with light stirring every 15 days. Bentonite clay, with a high content of smectite and Ca and Mg as the main exchangeable cations, and high heat capacity, was used. The selected mineral-medicinal waters were collected from two Portuguese thermal centers with recognized therapeutic efficacy for rheumatic, respiratory and dermatological pathologies. The peloids were used without drying and withdrawn directly from the maturation tank, and a mixture of bentonite and demineralized water was prepared as a reference sample. A stabilized, ready-to-use, artificial perspiration test was used to simulate the peloids' interaction with skin. Thirty-one elements extracted from the two prepared peloids were analyzed using ICP-MS. The data were analyzed and related to the mineralogical composition of the original clay and supernatant composition of the maturation tanks. The content of some potentially toxic elements and metals' bioaccessibility by perspiration showed very low solubility and undetectable amounts extracted from the studied samples. This analytical method provided reliable information on dermal exposure and the identification of some elements that may enter the systemic circulation, requiring implementation of surveillance and control measures.


Asunto(s)
Bentonita , Aguas Minerales , Humanos , Arcilla , Minerales/química , Azufre
3.
Artículo en Inglés | MEDLINE | ID: mdl-32408650

RESUMEN

Clays are natural ingredients used to prepare therapeutic cataplasms suitable for topical application. The knowledge about these formulations and their preparations to be applied on humans and animals has been orally transmitted since ancient times. Several empirical methods using clays have demonstrated fast and effective results in the reduction of the inflammatory response and the formation of edemas in horse limbs. The use of traditional and alternative medicine, such as pelotherapy, is now becoming more popular in veterinarian medical practice, alone or combined with other therapies in horse muscle and tendon rehabilitation. This study characterizes the use of commercial equine clays and an old therapeutic clay cataplasm formulation, using acetic acid, to treat tendon injuries in horses. This work might contribute to a major database characterization of clays used empirically on equine health, the potential of dermal absorption, the risks of exposure to some toxic elements, and safety assessment for these formulations. The present study was carried out to characterize the suitability of four commercial equine clays (Group II) and a protocoled healing mixture: "clay acetic acid cataplasm", (Group III), to treat tendon injuries in horses. In this mixture, three conventional "green" clays (Group I) without any mineralogical specificity were used and blended with acetic acid. The mineralogical composition was determined through X-ray powder diffraction and X-ray fluorescence data. To determine the performance of the samples, cooling kinetics, oil absorption, expandability, and specific surface area were measured. According to the mineralogical composition, Group I was mainly composed of carbonates and silicates, while Group II was much richer in silicates with the main clay minerals kaolinite and illite. Group II exhibited the highest values for As, Pb, Cr, Ni, and Zn, considered potentially toxic. Both groups showed low cation exchange capacities and exchanged mainly Ca2+, with the exception of VET.1 and VET.7, which also highlight Na+, and VET.5 and VET.6, which have K+ as an exchangeable main cation. The addition of acetic acid (Group III) does not reveal any significant chemical changes. The results confirm that both clay groups are adequate for the therapeutic propose. They have good plastic properties (skin adherence), good oil absorptive capabilities (cleaning), and exchange an essential physiological element, calcium. Group II has prior industrial preparation, which is probably why it showed better results. Group I presented lower heat retention capacity and higher abrasiveness, which could be improved using cosmetic additives. The clinical benefit of the "clay acetic acid cataplasm" (Group III) could be the systemic anti-inflammatory effect established by the acetic acid.


Asunto(s)
Arcilla , Cosméticos , Enfermedades de los Caballos , Adsorción , Silicatos de Aluminio , Animales , Carbonatos , Enfermedades de los Caballos/terapia , Caballos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...