Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(45): 101535-101545, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651018

RESUMEN

As the most abundant metal in the earth's crust, aluminum (Al) is used in many sectors, and nowadays, there is an increase in anthropogenic releases to aquatic ecosystems. This is particularly true in the context of corrosion protection systems involving galvanic anodes, which are mostly made of Al. Corroded instead of the steel structures they protect, galvanic anodes are described as sacrificial anodes. In contact with seawater, they undergo oxidation and release various metals in the form of ions or oxy-hydroxides into the marine environment, mainly Al and zinc (Zn). Several studies agree that Al increases the incidence of abnormal development in bivalve larvae from 150 µg L-1 which is close to the highest Al concentrations recorded in coastal waters. Therefore, we studied the impact of the cocktail of metals released by aluminum-based galvanic anodes on the development of Crassostrea gigas larvae, which we compared to the effects of aluminum chloride hexahydrate and zinc chloride alone and their mixture. The anode solution was realized thanks to an experimental device simulating the dissolution of a galvanic anode in the marine environment in order to reproduce the cocktail of metal species. We calculated an EC50 of 193.55 µg L-1 and 100.05 µg L-1 for Al and Zn chloride alone, respectively, and we highlighted an EC50 of 190.22 µg L-1 for the galvanic anode based on Al concentration. The mixture of the two metals in their chloride form resulted in the observation of additive and synergistic effects, which underlines the importance of considering the cocktail effect in ecotoxicological studies.

2.
Ecotoxicology ; 32(4): 438-450, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37055676

RESUMEN

To protect metal structures immersed in the sea from corrosion, the galvanic anode cathodic protection system (GACP) is often applied. However, this association leads to continuous oxidation of the galvanic anode and therefore to a release of a metal cocktail in the forms of ions or oxy-hydroxides. Therefore, the main objective of our study was to investigate the toxicity of elements released from the dissolution of an aluminium-based galvanic anode (∼95% Al, ∼5% Zn, <0.1% for In, Cu, Cd, Mn, Fe) on a grazing gastropod, the abalone Haliotis tuberculata. The present study was carried out in complement to other research currently in submission. Gastropods were exposed for 16 weeks (12 weeks of exposure and 4 weeks of decontamination phase) to 6 conditions including a control, 4 concentrations based on total aluminium level (86, 425, 1096 and 3549 µg L-1) and a trophic control, corresponding to abalones placed in non-contaminated natural seawater but fed with contaminated algae. The effects of metals on growth, glycogen levels, brix index of hemolymph, MDA levels in digestive gland and gills, hemocyte phagocytic activity, ROS production, lysosomal system and the progress of gametogenesis were investigated throughout the entire exposure allowing the realization of kinetics. The results revealed that the aluminium-based anode does not seem to have an effect on the health status of the individuals for environmentally realistic concentrations. However, in extreme conditions strong effects were reported on the growth, immune system and reproduction of abalone.


Asunto(s)
Aluminio , Gastrópodos , Animales , Humanos , Aluminio/toxicidad , Metales/toxicidad , Alimentos Marinos , Electrodos
3.
Aquat Toxicol ; 258: 106501, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989926

RESUMEN

Very few studies have looked at the potential biological effects of degradation products of galvanic anodes particularly on primary producers which are central to food webs in marine ecosystems. The galvanic anode cathodic protection system (GACP) is widely used to protect submerged metallic structures from corrosion. Aluminium (Al) and zinc (Zn) are the main constituents of galvanic anodes and are therefore released in the marine environment by oxidation process to form ions or oxy-hydroxides. The main objective of our study was to evaluate the effects of the metals released from an aluminium-based galvanic anode on microphytobenthos performance in term of biofilm growing through the analysis of photosynthetic parameters, the determination of chlorophyll and extracellular polymeric substances (EPS). The bioaccumulation of Al and Zn were measured in the microphytobenthic compartment collected at the surface of polyvinyl chloride (PVC) plates exposed during 13 days to seawaters enriched in different concentrations of metals released from dissolution of one anode. Determination of bioconcentration factors confirmed that the microphytobenthos has incorporated Al. A significative effect was observed on the Chl a concentration for the higher tested concentration ([Al] = 210.1 ± 60.2 µg L - 1; [Zn] = 20.2 ± 1.4 µg L - 1). The seawater exposed to the anode affected the MPB productivity (ETRIImax) with consequences on acclimatation light (Ek), absorption cross section of PSII (σPII), Fv/Fm and NPQ. Regarding the EPS production, the anode degradation presented an impact on high and low molecular weight of both carbohydrates and protein fractions of microphytobenthos suggesting that EPS play an essential role in sequestering metal contaminants to maintain the integrity of the biological membranes and the functionality of the cellular organelles. The accumulation of Al released by GACP in microphytobenthos cells could lead to physiologic problems in photosynthetic organisms.


Asunto(s)
Aluminio , Contaminantes Químicos del Agua , Bioacumulación , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Zinc/análisis , Fotosíntesis , Electrodos
4.
Arch Environ Contam Toxicol ; 84(1): 32-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36564551

RESUMEN

In the marine environment, the galvanic anode cathodic protection system (GACP) undergoes oxidation and releases metals in the forms of ions or oxy-hydroxides into the environment. The objective of the present study was to investigate the toxicity of a cocktail of metals released from the dissolution of an aluminium-based galvanic anode (~ 95% Al, ~ 5% Zn) on the abalone Haliotis tuberculata. Juveniles were exposed for 16 weeks (i.e. 12 weeks of exposure and 4 weeks of decontamination phase) and their growth, intake rate, conversion rate and metallic concentrations were monitored. A total of 6 conditions were tested: a control, 4 concentrations based on Al and a trophic control. Results showed that the mortality reached 57% for individuals exposed to 1125 µg L-1 of Al, and the abalone growth significantly decreased for an Al concentration greater than 495 µg L-1. At the highest exposure concentration, intake rate measurements revealed that the appetite of abalones was affected, supported by the large increase in the conversion rate which was indicative of a poor feed efficiency. The monitoring of metallic concentrations showed that H. tuberculata strongly bioconcentrated Al relative to zinc. The diet did not appear to be the primary pathway for metal entry. Concentrations that significantly impacted abalone growth and survival during the experiment were higher than those found in natural environment, but the bioconcentration of Al into the tissues of a primary consumer such as abalone may be a potential pathway for Al to enter food webs.


Asunto(s)
Aluminio , Gastrópodos , Humanos , Animales , Solubilidad , Metales/toxicidad , Electrodos
5.
Aquat Toxicol ; 249: 106223, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35751942

RESUMEN

Among the anthropogenic sources releasing metallic species into the marine environment, the galvanic anode cathodic protection system (GACP) is widely used to protect submerged metallic structures from corrosion. Galvanic anodes are an alloy of metals of which the main component is aluminum or zinc. Very few studies were performed to study their potential biological effects. We investigated the chronic toxicity of an aluminum-based galvanic anode on the Pacific oyster, Crassostrea gigas. Oysters were exposed for 84 days to three concentrations of aluminum (50, 100 and 300 µg L-1) obtained with an electrochemical experimental device simulating the dissolution of a galvanic anode. At different exposure times, we studied a battery of biomarkers of the immune system, reproductive parameters and the metabolic state of the oysters. Results demonstrated a sensitivity of oysters at the highest concentration and some biological effects were observed especially for the malondialdehyde content in the digestive gland after 84 days of exposure. In addition to these biomarkers, the bioaccumulation of the different metals composing the anode was measured in oysters' tissues. Bivalves bioaccumulated more zinc than aluminum, even if aluminium was present in greater concentrations during exposures. Moreover, exposure time did not influence the bioaccumulation of aluminum in contrast to zinc.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Aluminio/metabolismo , Aluminio/toxicidad , Animales , Biomarcadores/metabolismo , Electrodos , Metales/metabolismo , Solubilidad , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad
6.
Fish Shellfish Immunol ; 60: 255-264, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27836724

RESUMEN

Since 1997, populations of the European abalone Haliotis tuberculata suffer mass mortalities attributed to the bacterium Vibrio harveyi. These mortalities occur at the spawning season, when the abalone immune system is depressed, and when temperatures exceed 17 °C, leading to favorable conditions for V. harveyi proliferation. In order to identify mechanisms of disease resistance, experimental successive infections were carried out on two geographically distinct Brittany populations: one that has suffered recurrent mortalities (Saint-Malo) and one that has not been impacted by the disease (Molène). Furthermore, abalone surviving these two successive bacterial challenges and uninfected abalone were used for several post-infection analyses. The Saint-Malo population was found to be resistant to V. harveyi infection, with a survival rate of 95% compared to 51% for Molène. While in vitro quantification of phagocytosis by flow cytometry showed strong inhibition following the first infection, no inhibition of phagocytosis was observed following the second infection for Saint-Malo, suggesting an immune priming effect. Moreover, assays of phagocytosis of GFP-labelled V. harveyi performed two months post-infection show an inhibition of phagocytosis by extracellular products of V. harveyi for uninfected abalone, while no effect was observed for previously infected abalone from Saint-Malo, suggesting that the effects of immune priming may last upwards of two months. Detection of V. harveyi by qPCR showed that a significantly greater number of abalone from the susceptible population were positive for V. harveyi in the gills, indicating that portal of entry effectors may play a role in resistance to the disease. Collectively, these results suggest a potential synergistic effect of gills and hemolymph in the resistance of H. tuberculata against V. harveyi with an important involvement of the gills, the portal of entry of the bacteria.


Asunto(s)
Gastrópodos/inmunología , Gastrópodos/microbiología , Inmunidad Innata , Vibrio/fisiología , Animales , Branquias/inmunología , Hemolinfa/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Springerplus ; 5(1): 1260, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536543

RESUMEN

The polychaete Sabellaria alveolata (Linnaeus, 1767) is an important ecosystem engineer building reef structures which add to the topographic complexity in colonized areas. In Europe, the most extensive reef formation is located in the Bay of Mont-Saint-Michel (France). Since 2006, Sabellaria bio-constructions have developed on hard substrates along the west coast of the Cotentin Peninsula between Champeaux and Saint-Germain-sur-Ay on the northern part of the Bay of Mont-Saint-Michel. In this sector, two distinct types of bio-construction can be distinguished: platforms and reefs. The aim of this study is to analyse the patterns of the associated macrofauna on these platforms and reefs, as well as outside, and test for a correlation between the presence of Sabellaria bio-constructions and the richness of the benthic macrofauna. Univariate analyses are used to compare the macrofauna on four sites (Champeaux, Lingreville, Blainville-sur-Mer and Saint-Germain-sur-Ay). The results show a higher taxonomic richness on the platform-type than on the reef-type structures, and also a higher taxonomic richness outside the bio-construction areas. This suggests that, on the examined sites, the presence of S. alveolata bio-constructions does not contribute to higher levels of benthic macrofaunal richness on hard substrates. Temporary bio-constructions along this coast exhibit reefs of interest at some sites as well as in very small zones which merit special attention.

8.
Mar Genomics ; 28: 11-16, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26971316

RESUMEN

The European abalone Haliotis tuberculata is a delicacy and consequently a commercially valuable gastropod species. Aquaculture production and wild populations are subjected to multiple climate-associated stressors and anthropogenic pressures, including rising sea-surface temperatures, ocean acidification and an emerging pathogenic Vibrio infection. Transcript expression data provides a valuable resource for understanding abalone responses to variation in the biotic and abiotic environment. To generate an extensive transcriptome, we performed next-generation sequencing of RNA on larvae exposed to temperature and pH variation and on haemolymph of adults from two wild populations after experimental infection with Vibrio harveyi. We obtained more than 1.5 billion raw paired-end reads, which were assembled into 328,519 contigs. Filtration and clustering produced a transcriptome of 41,099 transcripts, of which 10,626 (25.85%) were annotated with Blast hits, and 7380 of these were annotated with Gene Ontology (GO) terms in Blast2Go. A differential expression analysis comparing all samples from the two life stages identified 5690 and 10,759 transcripts with significantly higher expression in larvae and adult haemolymph respectively. This is the greatest sequencing effort yet in the Haliotis genus, and provides the first high-throughput transcriptomic resource for H. tuberculata.


Asunto(s)
Gastrópodos/genética , Transcriptoma , Vibrio/fisiología , Animales , Gastrópodos/crecimiento & desarrollo , Gastrópodos/microbiología , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Larva , Análisis de Secuencia de ARN
9.
Environ Sci Pollut Res Int ; 20(5): 2984-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23054777

RESUMEN

Because sponges are promising bioindicators, we present here a multispecies comparison of the bioconcentration capacity for copper, zinc and the hydrocarbon fluoranthene. The spatial distribution of sponge populations was studied in 17 areas in intertidal zones on the Lower Normandy coast (France) to determine the most common species with the highest bioaccumulation capacity. Results are compared with published data on blue mussels Mytilus edulis from the Réseau d'Observation de la Contamination Chimique biomonitoring network. A total of 720 sponge samples were collected to assess species richness. Samples were analysed for metal concentrations by flame-mode atomic absorption spectrometry. Analyses of polycyclic aromatic hydrocarbon were sub-contracted. Species richness varies according to the water mass concerned. The most common species in the study area showing the highest bioconcentration in its soft tissues is Hymeniacidon perlevis, which contains about 20 times the zinc, 44 times the copper and 16 times the fluoranthene levels found in mussels. The variability of contaminant concentrations in H. perlevis is also systematically higher than those in mussels. The results obtained for this sponge closely reflect the heterogeneous distribution of contaminants. This study demonstrates that H. perlevis has a much higher capacity to accumulate in situ contaminants than the blue mussel M. edulis. H. perlevis meets all the requirements of a good bioindicator suitable for use in an integrated monitoring programme. In the near future, controlled cultivation of H. perlevis will allow us to produce sufficient quantities of this species to carry out ecotoxicological tests and in situ biomonitoring by caging.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Poríferos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Calidad del Agua , Animales , Cobre/metabolismo , Fluorenos/metabolismo , Francia , Cromatografía de Gases y Espectrometría de Masas , Metales , Poríferos/efectos de los fármacos , Estaciones del Año , Especificidad de la Especie , Espectrofotometría Atómica , Zinc/metabolismo
10.
C R Biol ; 332(12): 1104-14, 2009 Dec.
Artículo en Francés | MEDLINE | ID: mdl-19931848

RESUMEN

All stages of development of the sea urchin are of interest in ecotoxicology; the largest number of prior works concerns studies on gametes. Previous studies indicated that the use of sea urchin larvae was difficult because of the need to obtain the parent generations and good quality gametes. Progress in sea urchin culture has allowed one to standardize the method. The proposed technique is based on an evaluation of the number of non-developing fertilized eggs, on the frequency of malformations, and on the length of the larvae at 96 hours, using parents raised under well-controlled conditions. Temperature (18-22 degrees C), salinity (28-34 ppt) and pH (8-8.4) have been fixed to standardize the proposed biological test. Thirty micrograms per litre of copper reduce significantly the length of the larvae and could be used as a positive control. On the other hand, reconstituted sea water permits an optimal development of the larvae and may be used as negative control. A seasonal follow-up of water quality has been achieved to validate the use of this technique in a surveillance network of water quality. The method may be used whatever the salinity, including fresh and brackish waters.


Asunto(s)
Monitoreo del Ambiente/métodos , Erizos de Mar/crecimiento & desarrollo , Agua de Mar , Contaminantes Químicos del Agua/efectos adversos , Animales , Cobre/análisis , Cobre/toxicidad , Ecotoxicología , Embrión no Mamífero , Monitoreo del Ambiente/normas , Células Germinativas , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Estándares de Referencia , Salinidad , Estaciones del Año , Temperatura , Contaminantes Químicos del Agua/análisis , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA