Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 406: 135094, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36470085

RESUMEN

In this study, we have described a miniaturized, simple, and low-cost device for sulfite determination in beverages by coupling Gas Diffusion Microextraction to paper-based analytical devices. The color change of an acid-base indicator - promoted by the generated gaseous SO2 - impregnated onto the paper surface was monitored in the function of time by video recording using a smartphone. The analytical information was related to the Hue, Saturation, Value (HSV) color space extracted from the video file. The complete analytical platform was built using a 3D printer, allowing the easy fabrication of a low-cost tailored device. Under optimized conditions, a linear relation from 5 to 90 mg L-1 was obtained using 30 µL of the reagent, 1 mL of sample, and 10 min of analysis. The relative standard deviation and the limit of detection were 2.2 % and 1.6 mg L-1, respectively. The method was successfully employed in several beverages, such as juices, soda, and coconut water.


Asunto(s)
Bebidas , Bebidas Gaseosas , Bebidas/análisis , Bebidas Gaseosas/análisis , Teléfono Inteligente , Sulfitos/análisis , Impresión Tridimensional
2.
Anal Chim Acta ; 1143: 1-8, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33384106

RESUMEN

Commercial printers based on fused deposition modeling (FDM) are widely adopted for 3D printing applications. This method consists of the heating of polymeric filaments over the melting point followed by their deposition onto a solid base to create the desirable 3D structure. Prior investigation using chromatographic techniques has shown that chemical compounds (e.g. VOCs), which can be harmful to users, are emitted during the printing process, producing adverse effects to human health and contributing to indoor air pollution. In this study, we present a simple, inexpensive and disposable paper-based optoelectronic nose (i.e. colorimetric sensor array) to identify the gaseous emission fingerprint of five different types of thermoplastic filaments (ABS, TPU, PETG, TRITAN and PLA) in the indoor environment. The optoelectronic nose is comprised of selected 15 dyes with different chemical properties deposited onto a microfluidic paper-based device with spots of 5 mm in diameter each. Digital images were obtained from an ordinary flatbed scanner, and the RGB information collected before and after air exposure was extracted by using an automated routine designed in MATLAB, in which the color changes provide a unique fingerprint for each filament in 5 min of printing. Reproducibility was obtained in the range of 2.5-10% (RSD). Hierarchical clustering analysis (HCA) and principal component analysis (PCA) were successfully employed, showing suitable discrimination of all studied filaments and the non-polluted air. Besides, air spiked with vapors of the most representative VOCs were analyzed by the optoelectronic nose and visually compared to each filament. The described study shows the potential of the paper-based optoelectronic nose to monitor possible hazard emissions from 3D printers.

3.
Talanta ; 222: 121558, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33167256

RESUMEN

The determination of sulfide anion in a variety of waters (e.g. wastewaters and natural waters) even at low concentration (i.e. in the µM range) is essential due to its high toxicity, corrosivity and unpleasant smelling proprieties. Despite several methodologies are dedicated to aqueous sulfide determination, most of them need sampling/transport steps - which is no adequate to sulfide due to its reactivity and instability - resulting in critical analytical bias. In this study, we present a fully modular and portable 3D-printed platform for in-situ aqueous sulfide determination. The analytical device is based on H2S vapor generation from the sulfide sample solution by addition of H3PO4 followed by collection in a miniaturized cuvette (µCuvette) containing few microliters of Fluorescein Mercury Acetate (FMA), a fluorescent dye. The chemical reaction results in fluorescence quenching of the dye at 530 nm when excited at 470 nm. A light-emitted diode (LED) emitting at 470 nm and powered with 9 V-battery based circuitry was employed to provide stable excitation light source at 20 mA. Digital images from the light emitted by FMA were captured by a smartphone and the Green channel intensity was used as analytical signal. Under optimized conditions, a linear relation (r2 > 0.99) from 0.1 to 5 µM of sulfide was obtained using 10 mL of standard/sample solution. The portable platform was applied to the in-situ monitoring of sulfide in tap water and river water with no loss of analyte, no need for external power supplies or powered pumps. and the analysis results were obtained in 20 min. The proposed device shows advantages in terms of high degree of portability, low-power consumption, easiness to use, minimal use of reagents yet enabling on-site determination of sulfide with high sensitivity. By using the vapor generation approach combined with the modular building blocks concept presented herein for the first time, we anticipate the development of a tailored "plug-and-play" platform enabling the multiplexed determination of volatile substances using absorbance, reflectance or fluorescence measurements with smartphones.

4.
J Sep Sci ; 41(14): 2969-2975, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29785728

RESUMEN

Ammonium and diphenhydramine are active ingredients commonly found in the same pharmaceutical preparations. We report, for the first time, a sub-minute method for the simultaneous determination of ammonium and diphenhydramine. The method is based on capillary electrophoresis with capacitively coupled contactless conductivity detection. Both analytes can be quantified in a single run (∼80 injections/h) using 30 mmol/L 2-(N-morpholino)ethanesulfonic acid and 15 mmol/L lithium hydroxide (pH 6.0) as background electrolyte. The separation by capillary electrophoresis was achieved on a fused-silica capillary (50 cm total length, 10 cm effective length, and 50 µm inside diameter). The limits of detection were 0.04 and 0.02 mmol/L for ammonium and diphenhydramine, respectively. The proposed method also provided adequate recovery values for spiked samples (100-106 and 97-104% for ammonium and diphenhydramine, respectively). The results obtained with the new capillary electrophoresis method were compared with those of the high-performance liquid chromatography method for diphenhydramine and the Kjeldahl method for ammonium and no statistically significant differences were found (95% confidence level).

5.
J Chromatogr A ; 1217(16): 2533-42, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20035942

RESUMEN

This review outlines recent progress in the research on some new classes of sorbents for extraction and microextraction techniques. Carbon nanotubes are allotropes of carbon with cylindrical structure. They are very stable systems having considerable chemical inertness due to the strong covalent bonds of the carbon atoms on the nanotube surface. Some applications of carbon nanotubes are presented in a perspective view. Molecular imprinting has proved to be an effective technique for the creation of recognition sites on a polymer scaffold. By a mechanism of molecular recognition, the molecularly imprinted polymers are used as selective tools for the development of various analytical techniques such as liquid chromatography, capillary electrochromatography, solid-phase extraction (SPE), binding assays and biosensors. Sol-gel chemistry provides a convenient pathway to create advanced material systems that can be effectively utilized to solve the solid phase microextraction fiber technology problems. This review is mainly focused on recent advanced developments in the design, synthesis and application of sol-gel in preparation of coatings for the SPME fibers.


Asunto(s)
Fraccionamiento Químico/métodos , Microquímica/métodos , Adsorción , Impresión Molecular , Nanotubos de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA