RESUMEN
The therapeutic effects from Citrus reticulata on painful inflammatory ailments are associated to its flavonoids constituent and phytochemical studies with Citrus genus affirm that the peels have important amounts of it. These bioactive compounds have been a considerable therapeutic source and evaluate potential application of the peel extract is significant. This research aims to investigate the influence of ethanolic crude extract from the peels of Citrus reticulata and its possible mechanism of action in different animal models of pain. The extract reduced hyperalgesia in the second phase of formalin test (vehicle: 501.5 ± 40.0 s; C. reticulata extract 300 mg/kg: 161.8 ± 41.1 s), in the carrageenan model (vehicle at 4th h: 82.5 ± 9.6 %; C. reticulata extract 300 mg/kg at 4th h: 47.5 ± 6.5 %) and in Complete Freund's Adjuvant model (vehicle: 501.5 ± 40.0 s; C. reticulata extract 300 mg/kg: 161.8 ± 41.1 s). The possible contribution of opioidergic and adenosinergic systems in the anti-hyperalgesic effect of C. reticulata extract was observed after treatment, with non-selective antagonists for both systems, which produced reversal effects. In conclusion, these properties of C. reticulata extract suggest a potential therapeutic benefit in treating painful conditions.
Asunto(s)
Analgésicos/farmacología , Citrus/química , Hiperalgesia/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carragenina , Evaluación Preclínica de Medicamentos , Etanol , Masculino , Ratones , Dimensión del Dolor , Fitoquímicos/análisis , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéuticoRESUMEN
This study was designed to determine whether 3 weeks of gabapentin treatment is effective in alleviating neuropathic pain-like behavior in animal models of complex regional pain syndrome type-I and partial sciatic nerve ligation (PSNL). We investigated the contribution of adenosine subtypes to the antihyperalgesic effect of gabapentin by examining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 subtype receptor antagonist on this effect. Neuropathic pain was produced by unilateral prolonged hind paw ischemia and reperfusion (I/R) or PSNL procedures which resulted in stimulus-evoked mechanical hyperalgesia. After procedures, animals received gabapentin (10, 30, or 100 mg/kg intraperitoneal, respectively), caffeine (10 mg/kg intraperitoneal or 150 nmol intrathecally) or DPCPX (3 µg intrathecally) alone or in combination. Mice were tested for tactile mechanical hyperalgesia at 1, 2, and 3 weeks following procedures. Gabapentin produced dose-related inhibition of mechanical hyperalgesia over a 3-week period, and this effect was blocked by concomitant caffeine or DPCPX administration 1 week after injuries. The results of this study demonstrated that the mechanism through which gabapentin produces its effect may involve the activation of adenosine A1 subtype receptor.
Asunto(s)
Aminas/uso terapéutico , Analgésicos/uso terapéutico , Cafeína/farmacología , Ácidos Ciclohexanocarboxílicos/uso terapéutico , Hiperalgesia/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptor de Adenosina A1/metabolismo , Distrofia Simpática Refleja/metabolismo , Médula Espinal/metabolismo , Ácido gamma-Aminobutírico/uso terapéutico , Animales , Modelos Animales de Enfermedad , Gabapentina , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Distrofia Simpática Refleja/tratamiento farmacológico , Médula Espinal/efectos de los fármacosRESUMEN
Water immersion is widely used in physiotherapy and might relieve pain, probably by activating several distinct somatosensory modalities, including tactile, pressure, and thermal sensations. However, the endogenous mechanisms behind this effect remain poorly understood. This study examined whether warm water immersion therapy (WWIT) produces an antiallodynic effect in a model of localized inflammation and whether peripheral opioid, cannabinoid, and adenosine receptors are involved in this effect. Mice were injected with complete Freund's adjuvant (CFA; intraplantar; i.pl.). The withdrawal frequency to mechanical stimuli (von Frey test) was used to determine 1) the effect of WWIT against CFA-induced allodynia and 2) the effect of i.pl. preadministration of naloxone (a nonselective opioid receptor antagonist; 5 µg/paw), caffeine (a nonselective adenosine receptor antagonist; 150 nmol/paw), 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; a selective adenosine A1 receptor antagonist; 10 nmol/paw), and AM630 (a selective cannabinoid receptor type 2 antagonist; 4 µg/paw) on the antiallodynic effect of WWIT against CFA-induced allodynia. Moreover, the influence of WWIT on paw inflammatory edema was measured with a digital micrometer. WWIT produced a significant time-dependent reduction of paw inflammatory allodynia but did not influence paw edema induced by CFA. Naloxone, caffeine, DPCPX, and AM630 injected in the right, but not in the left, hind paw significantly reversed the antiallodynic effect of WWIT. This is the first study to demonstrate the involvement of peripheral receptors in the antiallodynic effect of WWIT in a murine model of persistent inflammatory pain.