Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(14): 145502, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25167007

RESUMEN

We use molecular dynamics simulations to show that glass transition in a model phase separating amorphous alloy, Cu(50)Nb(50), occurs by gelation. At the glass transition, a mechanically stiff, percolating network of atoms with icosahedral local packing forms at the interfaces between compositionally enriched regions. This low-energy network halts coarsening of the phase-separated structure and imparts shear resistance. These features of glass transition are remarkably similar to gelation processes in polymeric and colloidal gels.

2.
Microsc Microanal ; 18(1): 152-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22258724

RESUMEN

Magnetron sputtered thin films of Cu, Nb, and Cu-Nb multilayers with 2.5 and 5 nm nominal layer thickness were deposited on Si and implanted with 4He+ and 3He+ ions. Secondary ion mass spectroscopy and nuclear reaction analysis, respectively, were used to measure the 4He+ and 3He+ concentration profile with depth inside the films. Cross-sectional transmission electron microscopy was used to characterize the helium bubbles. Analysis of the contrast from helium bubbles in defocused transmission electron microscope images showed a minimum bubble diameter of 1.25 nm. While pure Cu and Nb films showed bubble contrast over the entire range of helium implantation, the multilayers exhibited bubbles only above a critical He concentration that increased almost linearly with decreasing layer thickness. The work shows that large amounts of helium can be trapped at incoherent interfaces in the form of stable, nanometer-size bubbles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA