Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(38): 34401-34411, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188309

RESUMEN

In order to obtain the structural and electronic properties of pristine copper clusters and Cu13-SF6, Cu43-SF6, Cu55-SF6, Cu13-2SF6, Cu43-2SF6, and Cu55-2SF6 systems, DFT calculations were carried out. For Cu13-mSF6, its surface suffers a drastic deformation, and Cu43-mSF6 at its outer surface reveals strong interaction for the first chemical molecule; when the second molecule is interacting, these outer surfaces are not severely affected. These two cases degraded fully the first SF6 molecule; however the second molecule is bonded to the latter systems and for Cu55-mSF6 (m = 1 and 2) a structural transformation from SF6 →SF4 appears as well as inner and outer shells that display slight deformations. The electronic gaps do not exhibit drastic changes after adsorption of mSF6 molecules, and the magnetic moment remains without alterations. The whole system shows thermal and vibrational stability. In addition, for Cu13-mSF6 the values of the optical gap and intensity of the optical exhibit changes with respect to the pristine case (Cu13), and the rest of the systems do not exhibit major oscillations. These icosahedral copper clusters emerge as a good option to degrade mSF6 molecules.

2.
Sci Rep ; 9(1): 16521, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712591

RESUMEN

The effect of chemical order in the structural and physicochemical properties of B12N12 [4,6]-fullerene (BNF) isomers was evaluated using density functional theory and molecular dynamic calculations. The feasibility to find stable BNF isomers with atomic arrangement other than the well-known octahedral Th-symmetry was explored. In this study, the number of homonuclear bonds in the modeled nanostructures was used as categorical parameter to describe and quantify the degree of structural order. The BNF without homonuclear bonds was identified as the most energetically favorable isomer. However, a variety of BNF arrays departing from Th-symmetry was determined as stable structures also. The calculated vibrational spectra suggest that isomers with chemical disorder can be identified by infrared spectroscopy. In general, formation of homonuclear bonds is possible meanwhile the entropy of the system increases, but at expense of cohesive energy. It is proposed that formation of phase-segregated regions stablishes an apparent limit to the number of homonuclear bonds in stable B12N12 fullerenes. It was found that formation of homonuclear bonds decreases substantially the chemical hardness of BNF isomers and generates zones with large charge density, which might act as reactive sites. Moreover, chemical disorder endows BNF isomers with a permanent electric dipole moment as large as 3.28 D. The obtained results suggest that by manipulating their chemical order, the interaction of BNF's with other molecular entities can be controlled, making them potential candidates for drug delivery, catalysis and sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA