Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 28(9): 2443-2454.e4, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461657

RESUMEN

In the ovary, follicular growth and maturation are complicated processes that involve a series of morphological and physiological changes in oocytes and somatic cells leading to ovulation and luteinization, essential processes for fertility. Given the complexity of ovulation, characterization of genome-wide regulatory elements is essential to understand the mechanisms governing the expression of specific genes in the rapidly differentiating follicle. We therefore employed a systems biology approach to determine global transcriptional mechanisms during the early stages of the ovulatory process. We demonstrate that, following the hormonal signal that initiates ovulation, granulosa cells undergo major modification of distal regulatory elements, which coincides with cistrome reprogramming of the indispensable orphan nuclear receptor liver receptor homolog-1 (LRH-1). This cistromic reorganization correlates with the extensive changes in gene expression in granulosa cells leading to ovulation. Together, our study yields a highly detailed transcriptional map delineating ovarian cell differentiation during the initiation of ovulation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Folículo Ovárico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Motivos de Nucleótidos , Folículo Ovárico/citología , Ovulación
2.
J Immunol ; 194(10): 4940-50, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25876761

RESUMEN

Glucocorticoid (GC)-induced leucine zipper (GILZ) has been shown to mediate or mimic several actions of GC. This study assessed the role of GILZ in self-resolving and GC-induced resolution of neutrophilic inflammation induced by LPS in mice. GILZ expression was increased during the resolution phase of LPS-induced pleurisy, especially in macrophages with resolving phenotypes. Pretreating LPS-injected mice with trans-activator of transcription peptide (TAT)-GILZ, a cell-permeable GILZ fusion protein, shortened resolution intervals and improved resolution indices. Therapeutic administration of TAT-GILZ induced inflammation resolution, decreased cytokine levels, and promoted caspase-dependent neutrophil apoptosis. TAT-GILZ also modulated the activation of the survival-controlling proteins ERK1/2, NF-κB and Mcl-1. GILZ deficiency was associated with an early increase of annexin A1 (AnxA1) and did not modify the course of neutrophil influx induced by LPS. Dexamethasone treatment resolved inflammation and induced GILZ expression that was dependent on AnxA1. Dexamethasone-induced resolution was not altered in GILZ(-/-) mice due to compensatory expression and action of AnxA1. Our results show that therapeutic administration of GILZ efficiently induces a proapoptotic program that promotes resolution of neutrophilic inflammation induced by LPS. Alternatively, a lack of endogenous GILZ during the resolution of inflammation is compensated by AnxA1 overexpression.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Pleuresia/inmunología , Factores de Transcripción/inmunología , Animales , Anexina A1/inmunología , Apoptosis/inmunología , Western Blotting , Movimiento Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
PLoS One ; 10(3): e0119387, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803847

RESUMEN

Mitogen-activated protein kinase 3/1 (Mapk3/1) pathway is critical for LH signal transduction during ovulation. However, the mechanisms remain incompletely understood. We hypothesized that Mapk pathway regulates ovulation through transcriptional regulation of ovulatory genes. To test this hypothesis we used immature mice superovulated with equine and human chorionic gonadotropins (eCG and hCG) and PD0325901, to inhibit hCG-induced Mapk3/1 activity. Mice received either the inhibitor PD0325901 (25 µg/g, i.p.) or vehicle at 2h before hCG stimulation. Administration of the inhibitor abolished Mapk3/1 phosphorylation in granulosa cells. While vehicle-treated mice ovulated normally, there were no ovulations in inhibitor-treated mice. First, we analyzed gene expression in granulosa cells at 0h, 1h and 4h post-hCG. There was expected hCG-driven increase in mRNA abundance of many ovulation-related genes including Ptgs2 in vehicle-treated granulosa cells, but not (P<0.05) in inhibitor-treated group. There was also reduced mRNA and protein abundance of the transcription factor, early growth response 1 (Egr1) in inhibitor-treated granulosa cells. We then used GRMO2 cell-line to test if Egr1 is recruited to promoter of Ptgs2 followed by chromatin immunoprecipitation with either Egr1 or control antibody. Enrichment of the promoter regions in immunoprecipitants of Egr1 antibody indicated that Egr1 binds to the Ptgs2 promoter. We then knocked down Egr1 expression in mouse primary granulosa cells using siRNA technology. Treatment with Egr1-siRNA inhibited Egr1 transcript accumulation, which was associated with reduced expression of Ptgs2 when compared to control-siRNA treated granulosa cells. These data demonstrate that transient inhibition of LH-stimulated MAPK3/1 activity abrogates ovulation in mice. We conclude that Mapk3/1 regulates ovulation, at least in part, through Egr1 and its target gene, Ptgs2 in granulosa cells of ovulating follicles in mice.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Ovulación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Benzamidas/farmacología , Ciclooxigenasa 2/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Gonadotropinas/farmacología , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/enzimología , Caballos , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/enzimología , Ovulación/fisiología , Cultivo Primario de Células , Superovulación/efectos de los fármacos
4.
Arthritis Rheumatol ; 66(8): 2059-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24782327

RESUMEN

OBJECTIVE: Glucocorticoids remain a mainstay in the treatment of rheumatoid arthritis (RA). Dose-dependent adverse effects highlight the need for therapies that regulate glucocorticoid sensitivity to enable dosage reduction. Macrophage migration inhibitory factor (MIF) is a proinflammatory protein that has been implicated in the pathogenesis of RA; it impairs glucocorticoid sensitivity via MAPK phosphatase 1 (MKP-1) inhibition. The intracellular protein glucocorticoid-induced leucine zipper (GILZ) mimics the effects of glucocorticoids in models of RA, but whether it represents a target for the modulation of glucocorticoid sensitivity remains unknown. We undertook this study to investigate whether GILZ is involved in the regulation of glucocorticoid sensitivity by MIF. METHODS: GILZ expression was studied in the presence and absence of MIF, and the role of GILZ in the MIF-dependent regulation of the glucocorticoid sensitivity mediator MKP-1 was studied at the level of expression and function. RESULTS: GILZ expression was significantly inhibited by endogenous MIF, both basally and during responses to glucocorticoid treatment. The effects of MIF on GILZ were dependent on the expression and Akt-induced nuclear translocation of the transcription factor FoxO3A. GILZ was shown to regulate the expression of MKP-1 and consequent MAPK phosphorylation and cytokine release. CONCLUSION: MIF exerts its effects on MKP-1 expression and MAPK activity through inhibitory effects on GILZ. These findings suggest a previously unsuspected interaction between MIF and GILZ and identify GILZ as a potential target for the therapeutic regulation of glucocorticoid sensitivity.


Asunto(s)
Glucocorticoides/farmacología , Leucina Zippers/efectos de los fármacos , Leucina Zippers/fisiología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Animales , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/efectos de los fármacos , Fosfatasa 1 de Especificidad Dual/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/fisiología
5.
J Immunol ; 191(1): 424-33, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23729444

RESUMEN

Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory protein first identified in T lymphocytes. We recently observed that GILZ is highly expressed in synovial endothelial cells in rheumatoid arthritis. However, the function of GILZ in endothelial cells is unknown. To investigate the actions of GILZ in this cell type, we induced GILZ expression in HUVECs via transient transfection. GILZ overexpression significantly reduced the capacity of TNF-stimulated HUVECs to support leukocyte rolling, adhesion, and transmigration. These effects were associated with decreased expression of E-selectin, ICAM-1, CCL2, CXCL8, and IL-6. Experiments in a human microvascular endothelial cell line demonstrated that TNF-inducible NF-κB activity was significantly inhibited by overexpression of GILZ. Exogenous GILZ inhibited TNF-induced NF-κB p65 DNA binding, although this occurred in the absence of an effect on p65 nuclear translocation, indicating that the mechanism of action of exogenous GILZ in endothelial cells differs from that reported in other cell types. GILZ overexpression also inhibited TNF-induced activation of p38, ERK, and JNK MAPKs, as well as increased expression of the MAPK inhibitory phosphatase, MKP-1. In contrast, silencing endogenous GILZ in glucocorticoid-treated HUVECs did not alter their capacity to support leukocyte interactions. These data demonstrate that exogenous GILZ exerts inhibitory effects on endothelial cell adhesive function via a novel pathway involving modulation of NF-κB p65 DNA binding and MAPK activity. Induction of GILZ expression in endothelial cells may represent a novel therapeutic modality with the potential to inhibit inflammatory leukocyte recruitment.


Asunto(s)
Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/genética , Migración Transendotelial y Transepitelial/inmunología , Adhesión Celular/genética , Adhesión Celular/inmunología , Comunicación Celular/inmunología , Línea Celular , Inhibición de Migración Celular/genética , Inhibición de Migración Celular/inmunología , Endotelio Vascular/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Microcirculación/genética , Microcirculación/inmunología , Cultivo Primario de Células , Distribución Aleatoria , Factores de Transcripción/biosíntesis , Factores de Transcripción/fisiología , Migración Transendotelial y Transepitelial/genética
6.
PLoS One ; 8(3): e59149, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516608

RESUMEN

Spermatogonia stem cell (SSC) self-renewal and differentiation are tightly regulated processes that ensure a continued production of mature sperm throughout male adulthood. In the present study, we investigated the role of glucocorticoid-induced leucine zipper (GILZ) in maintenance of the male germline and spermatogenesis. GILZ was detectable in germ cells of wild type mice on the day of birth, suggesting a role for GILZ in prospermatogonia and SSC pool formation. Gilz KO mice were generated and adult males were azoospermic and sterile. During the first wave of spermatogenesis in Gilz KO mice, spermatogenesis arrested part way through pachytene of meiosis I. Subsequent waves resulted in a progressive depletion of germ cells through apoptosis to ultimately produce a Sertoli cell-only phenotype. Further, in contrast to wild type littermates, PLZF(+) cells were detected in the peri-luminal region of Gilz KO mice at day 6 post-natal, suggesting a defect in prospermatogonia migration in the absence of GILZ. At age 30 days, transient accumulation of PLZF(+) cells in a subset of tubules and severely compromised spermatogenesis were observed in Gilz KO mice, consistent with defective SSC differentiation. GILZ deficiency was associated with an increase in FOXO1 transcriptional activity, which leads to activation of a selective set of FOXO1 target genes, including a pro-apoptotic protein, BIM. On the other hand, no evidence of a heightened immune response was observed. Together, these results suggest that GILZ suppresses FOXO1 nuclear translocation, promotes SSC differentiation over self-renewal, and favours germ cell survival through inhibition of BIM-dependent pro-apoptotic signals. These findings provide a mechanism for the effects of GILZ on spermatogenesis and strengthen the case for GILZ being a critical molecule in the regulation of male fertility.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Células Madre/metabolismo , Testículo/metabolismo , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatogénesis/genética , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Arthritis Rheum ; 65(5): 1203-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23335223

RESUMEN

OBJECTIVE: Glucocorticoid-induced leucine zipper (GILZ) has effects on inflammatory pathways that suggest it to be a key inhibitory regulator of the immune system, and its expression is exquisitely sensitive to induction by glucocorticoids. We undertook this study to test our hypothesis that GILZ deficiency would exacerbate experimental immune-mediated inflammation and impair the effects of glucocorticoids on inflammation and, correspondingly, that exogenous GILZ would inhibit these events. METHODS: GILZ(-/-) mice were generated using the Cre/loxP system, and responses were studied in delayed-type hypersensitivity (DTH), antigen-induced arthritis (AIA), K/BxN serum-transfer arthritis, and lipopolysaccharide (LPS)-induced cytokinemia. Therapeutic expression of GILZ via administration of recombinant adeno-associated virus expressing the GILZ gene (GILZ-rAAV) was compared to the effects of glucocorticoid in collagen-induced arthritis (CIA). RESULTS: Increased T cell proliferation and DTH were observed in GILZ(-/-) mice, but neither AIA nor K/BxN serum-transfer arthritis was affected, and GILZ deficiency did not affect LPS-induced cytokinemia. Deletion of GILZ did not impair the effects of exogenous glucocorticoids on CIA or cytokinemia. In contrast, overexpression of GILZ in joints significantly inhibited CIA, with an effect similar to that of dexamethasone. CONCLUSION: Despite effects on T cell activation, GILZ deficiency had no effect on effector pathways of arthritis and was unexpectedly redundant with effects of glucocorticoids. These findings do not support the hypothesis that GILZ is central to the actions of glucocorticoids, but the efficacy of exogenous GILZ in CIA suggests that further evaluation of GILZ in inflammatory disease is required.


Asunto(s)
Artritis Experimental/terapia , Hipersensibilidad Tardía/terapia , Factores de Transcripción/genética , Adenoviridae/genética , Animales , Artritis Experimental/genética , Proliferación Celular , Dexametasona/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Marcación de Gen , Terapia Genética/métodos , Glucocorticoides/farmacología , Hipersensibilidad Tardía/genética , Lipopolisacáridos/farmacología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Factores de Transcripción/deficiencia , Transducción Genética
8.
Endocrinology ; 153(12): 5796-808, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23064015

RESUMEN

Adipogenesis, the biological process by which preadipocytes differentiate into mature fat cells, is coordinated by a tightly regulated gene expression program. Indeed, it has been reported that a large number of genetic events, from fat cell-specific transcription factors expression, such as the master regulator of fat cell differentiation peroxisome proliferator-activated receptor (PPAR)γ2 to epigenetic modifications, govern the acquisition of a mature adipocyte phenotype. Here, we provide evidence that the E1A-binding protein p400 (p400) complex subunit bromo-containing protein 8 (Brd8) plays an important role in the regulation of PPARγ target genes during adipogenesis by targeting and incorporating the histone variant H2A.Z in transcriptional regulatory regions. The results reported here indicate that expression of both Brd8 and p400 increases during fat cell differentiation. In addition, small hairpin RNA-mediated knockdown of Brd8 or H2A.Z completely abrogated the ability of 3T3-L1 preadipocyte to differentiate into mature adipocyte, as evidenced by a lack of lipid accumulation. Chromatin immunoprecipitation experiments also revealed that the knockdown of Brd8 blocked the accumulation of PPARγ, p400, and RNA polymerase II and prevented the incorporation of H2A.Z at two PPARγ target genes. Taken together, these results indicate that the incorporation of the histone variant H2A.Z at the promoter regions of PPARγ target genes by p400/Brd8 is essential to allow fat cell differentiation.


Asunto(s)
Adipogénesis/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , PPAR gamma/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipocitos/citología , Animales , Inmunoprecipitación de Cromatina , Epigénesis Genética , Células HEK293 , Histonas/química , Humanos , Lípidos/química , Ratones , Fenotipo , Regiones Promotoras Genéticas
9.
Nat Rev Rheumatol ; 7(6): 340-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21556028

RESUMEN

Glucocorticoids have been exploited therapeutically for more than six decades through the use of synthetic glucocorticoids as anti-inflammatory agents, and are still used in as many as 50% of patients suffering from inflammatory diseases such as rheumatoid arthritis (RA). Better understanding of the mechanisms of action of glucocorticoids could enable the development of therapies that dissociate the broad-spectrum benefits of glucocorticoids from their adverse metabolic effects. The glucocorticoid-induced leucine zipper protein (GILZ; also known as TSC22 domain family protein 3) is a glucocorticoid-responsive molecule whose interactions with signal transduction pathways, many of which are operative in RA and other inflammatory diseases, suggest that it is a key endogenous regulator of the immune response. The overlap between the observed effects of GILZ on the immune system and those of glucocorticoids strongly suggest GILZ as a critical mediator of the therapeutic effects of glucocorticoids. Observations of the immunomodulatory effects of GILZ in human RA synovial cells, and in an in vivo model of RA, support the hypothesis that GILZ is a key glucocorticoid-induced regulator of inflammation in RA. Moreover, evidence that the effect of GILZ on bone loss might be in contrast to those of glucocorticoids suggests manipulation of GILZ as a potential means of dissociating the beneficial anti-inflammatory effects of glucocorticoids from their negative metabolic repercussions.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Glucocorticoides/uso terapéutico , Inmunomodulación/inmunología , Factores de Transcripción/inmunología , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
10.
Arthritis Rheum ; 62(9): 2651-61, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20496421

RESUMEN

OBJECTIVE: Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced protein, the reported molecular interactions of which suggest that it functions to inhibit inflammation. However, the role of endogenous GILZ in the regulation of inflammation in vivo has not been established. This study was undertaken to examine the expression and function of GILZ in vivo in collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis (RA), and in RA synoviocytes. METHODS: GILZ expression was detected in mouse and human synovium by immunohistochemistry and in cultured cells by real-time polymerase chain reaction and permeabilization flow cytometry. GILZ function was assessed in vivo by small interfering RNA (siRNA) silencing using cationic liposome-encapsulated GILZ or control nontargeting siRNA and was assessed in vitro using transient overexpression. RESULTS: GILZ was readily detectable in the synovium of mice with CIA and was up-regulated by therapeutic doses of glucocorticoids. Depleting GILZ expression in vivo increased the clinical and histologic severity of CIA and increased synovial expression of tumor necrosis factor and interleukin-1 (IL-1), without affecting the levels of circulating cytokines or anticollagen antibodies. GILZ was highly expressed in the synovium of patients with active RA and in cultured RA synovial fibroblasts, and GILZ overexpression in synovial fibroblasts inhibited IL-6 and IL-8 release. CONCLUSION: Our findings indicate that GILZ functions as an endogenous inhibitor of chronic inflammation via effects on cytokine expression and suggest that local modulation of GILZ expression could be a beneficial therapeutic strategy.


Asunto(s)
Artritis Experimental/metabolismo , Glucocorticoides/fisiología , Mediadores de Inflamación/fisiología , Factores de Transcripción/metabolismo , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Células Cultivadas , Citocinas/metabolismo , Dexametasona/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Silenciador del Gen , Glucocorticoides/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Factores de Transcripción/genética , Transfección
11.
Arthritis Rheum ; 60(8): 2220-31, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19644855

RESUMEN

OBJECTIVE: Macrophage migration inhibitory factor (MIF) is a proinflammatory mediator involved in the pathogenesis of rheumatoid arthritis. This study was undertaken to identify the MIF promoter elements responsible for regulating gene expression. METHODS: Luciferase reporter gene assays were used to identify the MIF promoter sequence responsible for basal activity. Bioinformatic analysis was used to predict transcription factor binding sites, and electrophoretic mobility shift assay (EMSA) was used to demonstrate transcription factor binding. Chromatin immunoprecipitation (ChIP) was used to demonstrate transcription factor loading on the MIF promoter. RESULTS: We identified the minimal promoter sequence required for basal MIF promoter activity that was also capable of conferring glucocorticoid-dependent inhibition in a T lymphocyte model cell line. Deletion studies and EMSA revealed 2 elements in the MIF promoter that were responsible for basal promoter activity. The 5' element binds CREB/activating transcription factor 1, and the 3' element is a functional hypoxia-responsive element binding hypoxia-inducible factor 1alpha. Further studies demonstrated that the cis elements are both required for glucocorticoid-dependent inhibition. ChIP demonstrated glucocorticoid-dependent recruitment of glucocorticoid receptor alpha to the MIF promoter in lymphocytes within 1 hour of treatment and a concomitant decrease in acetylated histone H3. CONCLUSION: Our findings indicate that hypoxia and glucocorticoid signaling converge on a single element regulating MIF; this regulatory unit is a potential interacting node for microenvironment sensing of oxygen tension and glucocorticoid action in foci of inflammation.


Asunto(s)
Hipoxia de la Célula/genética , Regulación de la Expresión Génica , Glucocorticoides/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Transducción de Señal/genética , Secuencia de Bases , Línea Celular , Cromatografía de Afinidad/métodos , ADN/química , Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Datos de Secuencia Molecular , Oligonucleótidos/química , Unión Proteica/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...