Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Handb Clin Neurol ; 203: 69-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39174255

RESUMEN

The neuromuscular junction is a prototypic synapse that has been extensively studied and provides a model for smaller and less accessible central synapses. Central to transmission at the neuromuscular synapse is the muscle acetylcholine receptor cation channel. Studies of the genetic disorders affecting the neuromuscular junction, termed congenital myasthenic syndromes, have illustrated how impaired signal transmission may be caused by a variety of mutations both within the ion channel itself and by the context of the ion channel within the synapse. Thus, multiple pathogenic mutations are also identified in proteins affecting the clustering, location, and density of the receptor within the overall synaptic structure. Disease severity ranges from death in childhood to mild disability throughout life. In addition, in utero, fetal akinesia due to impaired neuromuscular transmission may cause developmental abnormalities. Early studies identified mutations in the genes encoding the acetylcholine receptor subunits that impair ion channel gating or reduce the number of endplate receptors or a combination of the two, giving rise to "slow channel," "fast channel," or deficiency syndromes. Subsequently, it became clear that myasthenic syndromes also stem from mutations in proteins involved in neurotransmitter release, the formation and maintenance of the neuromuscular synapse, or glycosylation. This chapter describes the patient phenotypes, the diverse range of molecular mechanisms for synaptic dysfunction, and the corresponding therapeutic strategies, including drug combinations, that can be tailored to the many subtypes.


Asunto(s)
Síndromes Miasténicos Congénitos , Unión Neuromuscular , Humanos , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/fisiopatología , Mutación/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Animales
2.
Curr Opin Neurol ; 37(5): 493-501, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39051439

RESUMEN

PURPOSE OF REVIEW: Congenital myasthenia syndromes (CMS) are treatable, inherited disorders affecting neuromuscular transmission. We highlight that the involvement of an increasing number of proteins is making the understanding of the disease mechanisms and potential treatments progressively more complex. RECENT FINDINGS: Although early studies identified mutations of proteins directly involved in synaptic transmission at the neuromuscular junction, recently, next-generation sequencing has facilitated the identification of many novel mutations in genes that encode proteins that have a far wider expression profile, some even ubiquitously expressed, but whose defective function leads to impaired neuromuscular transmission. Unsurprisingly, mutations in these genes often causes a wider phenotypic disease spectrum where defective neuromuscular transmission forms only one component. This has implications for the management of CMS patients. SUMMARY: Given the widening nonneuromuscular junction phenotypes in the newly identified forms of CMS, new therapies need to include disease-modifying approaches that address not only neuromuscular weakness but also the multisystem involvement. Whilst the current treatments for CMS are highly effective for many subtypes there remains, in a proportion of CMS patients, an unmet need for more efficacious therapies.


Asunto(s)
Síndromes Miasténicos Congénitos , Humanos , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/terapia , Unión Neuromuscular/genética , Unión Neuromuscular/fisiopatología , Mutación/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
4.
Cell Mol Life Sci ; 81(1): 129, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472514

RESUMEN

Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.3:p.G88R) to a unique ability to speak backwards, a language skill that is associated with exceptional working memory capacity. RIC3 is important for the folding, maturation, and functional expression of α7 nicotinic acetylcholine receptors (nAChR). We compared and contrasted the effects of RIC3G88R on assembly, cell surface expression, and function of human α7 receptors using fluorescent protein tagged α7 nAChR and Förster resonance energy transfer (FRET) microscopy imaging in combination with functional assays and 125I-α-bungarotoxin binding. As expected, the wild-type RIC3 protein was found to increase both cell surface and functional expression of α7 receptors. In contrast, the variant form of RIC3 decreased both. FRET analysis showed that RICG88R increased the interactions between RIC3 and α7 protein in the endoplasmic reticulum. These results provide interesting and novel data to show that a RIC3 variant alters the interaction of RIC3 and α7, which translates to decreased cell surface and functional expression of α7 nAChR.


Asunto(s)
Receptores Nicotínicos , Humanos , Acetilcolinesterasa/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores Nicotínicos/genética , Habla
5.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405691

RESUMEN

Congenital myasthenic syndromes (CMS) are a group of inherited disorders characterised by defective neuromuscular transmission and fatigable muscle weakness. Mutations in DOK7 , a gene encoding a post-synaptic protein crucial in the formation and stabilisation of the neuromuscular junction (NMJ), rank among the leading three prevalent causes of CMS in diverse populations globally. The majority of DOK7 CMS patients experience varying degrees of disability despite receiving optimised treatment, necessitating the development of improved therapeutic approaches. Here we executed a dose escalation pre-clinical trial using a DOK7-CMS mouse model to assess the efficacy of Amp-101, an innovative AAV gene replacement therapy. Amp-101 is based on AAVrh74 and contains human DOK7 cDNA under the control of a muscle-restricted promoter. We show that at doses 6x10 13 vg/kg and 1x10 14 vg/kg, Amp-101 generated enlarged NMJs and rescued the very severe phenotype of the model. Treated mice became at least as strong as WT littermates and the diaphragm and tibialis anterior muscles displayed robust expression of DOK7. This data suggests that Amp-101 is a promising candidate to move forward to clinic trials.

6.
Brain Commun ; 5(6): fcad299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035366

RESUMEN

Respiratory problems are a major cause of morbidity and mortality in patients with congenital myasthenic syndromes, a rare heterogeneous group of neuromuscular disorders caused by genetic defects impacting the structure and function of the neuromuscular junction. Recurrent, life-threatening episodic apnoea in early infancy and childhood and progressive respiratory failure requiring ventilation are features of certain genotypes of congenital myasthenic syndromes. Robb et al. published empirical guidance on respiratory management of the congenital myasthenic syndromes, but other than this workshop report, there are little published longitudinal natural history data on respiratory outcomes of these disorders. We report a retrospective, single-centre study on respiratory outcomes in a cohort of 40 well characterized genetically confirmed cases of congenital myasthenic syndromes, including 10 distinct subtypes (DOK7, COLQ, RAPSN, CHAT, CHRNA1, CHRNG, COL13A1, CHRNE, CHRNE fast channel syndrome and CHRNA1 slow channel syndrome), with many followed up over 20 years in our centre. A quantitative and longitudinal analysis of key spirometry and sleep study parameters, as well as a description of historical hospital admissions for respiratory decompensation, provides a snapshot of the respiratory trajectory of congenital myasthenic syndrome patients based on genotype.

7.
Genome Med ; 15(1): 94, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946251

RESUMEN

BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.


Asunto(s)
Variación Genética , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Pruebas Genéticas , Mutación , Proteínas de Ciclo Celular
8.
Artículo en Inglés | MEDLINE | ID: mdl-37582613

RESUMEN

BACKGROUND AND OBJECTIVES: Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS: C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and ßAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS: IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in ßAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION: MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.


Asunto(s)
Miastenia Gravis , Proteínas Tirosina Quinasas Receptoras , Humanos , Agrina/farmacología , Inmunoglobulina G , Proteínas Musculares/metabolismo , Miastenia Gravis/tratamiento farmacológico , Fosforilación , Receptores Colinérgicos
9.
Neuromuscul Disord ; 33(2): 161-168, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634413

RESUMEN

Primary acetylcholine receptor deficiency is the most common subtype of congenital myasthenic syndrome, resulting in reduced amount of acetylcholine receptors expressed at the muscle endplate and impaired neuromuscular transmission. AChR deficiency is caused mainly by pathogenic variants in the ε-subunit of the acetylcholine receptor encoded by CHRNE, although pathogenic variants in other subunits are also seen. We report the clinical and molecular features of 13 patients from nine unrelated kinships with acetylcholine receptor deficiency harbouring the CHRNA1 variant NM_001039523.3:c.257G>A (p.Arg86His) in homozygosity or compound heterozygosity. This variant results in the inclusion of an alternatively-spliced evolutionary exon (P3A) that causes expression of a non-functional acetylcholine receptor α-subunit. We compare the clinical findings of this group to the other cases of acetylcholine receptor deficiency within our cohort. We report differences in phenotype, highlighting a predominant pattern of facial and distal weakness in adulthood, predominantly in the upper limbs, which is unusual for acetylcholine receptor deficiency syndromes, and more in keeping with slow-channel syndrome or distal myopathy. Finally, we stress the importance of including alternative exons in variant analysis to increase the probability of achieving a molecular diagnosis.


Asunto(s)
Síndromes Miasténicos Congénitos , Receptores Nicotínicos , Humanos , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/patología , Exones/genética , Fenotipo , Mutación , Receptores Nicotínicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA