Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Prev Vet Med ; 214: 105889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36906937

RESUMEN

Controlling foot-and-mouth disease (FMD) by vaccination requires adequate population coverage and high vaccine efficacy under field conditions. To assure veterinary services that animals have acquired sufficient immunity, strategic post-vaccination surveys can be conducted to monitor the coverage and performance of the vaccine. Correct interpretation of these serological data and an ability to derive exact prevalence estimates of antibody responses requires an awareness of the performance of serological tests. Here, we used Bayesian latent class analysis to evaluate the diagnostic sensitivity and specificity of four tests. A non-structural protein (NSP) ELISA determines vaccine independent antibodies from environmental exposure to FMD virus (FMDV), and three assays measuring total antibodies derived from vaccine antigen or environmental exposure to two serotypes (A, O): the virus neutralisation test (VNT), a solid phase competitive ELISA (SPCE), and a liquid phase blocking ELISA (LPBE). Sera (n = 461) were collected by a strategic post-vaccination monitoring survey in two provinces of Southern Lao People's Democratic Republic (PDR) after a vaccination campaign in early 2017. Not all samples were tested by every assay and each serotype: VNT tested for serotype A and O, whereas SPCE and LPBE tested for serotype O, and only NSP-negative samples were tested by VNT, with 90 of them not tested (missing by study design). These data challenges required informed priors (based on expert opinion) for mitigating possible lack of model identifiability. The vaccination status of each animal, its environmental exposure to FMDV, and the indicator of successful vaccination were treated as latent (unobserved) variables. Posterior median for sensitivity and specificity of all tests were in the range of 92-99 %, except for the sensitivity of NSP (∼66%) and the specificity of LPBE (∼71 %). There was strong evidence that SPCE outperformed LPBE. In addition, the proportion of animals recorded as having been vaccinated that showed a serological immune response was estimated to be in the range of 67-86 %. The Bayesian latent class modelling framework can easily and appropriately impute missing data. It is important to use field study data as diagnostic tests are likely to perform differently on field survey samples compared to samples obtained under controlled conditions.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Serogrupo , Teorema de Bayes , Pruebas Serológicas/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Vacunación/veterinaria , Anticuerpos Antivirales , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/prevención & control
2.
Vaccine ; 41(1): 274-283, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36456390

RESUMEN

The cell mediated immune response and ability of immune cells to migrate to the site of infection are both key aspects of protection against many pathogens. Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen and the causative agent of paratuberculosis, a chronic wasting disease of ruminants. Current commercial vaccines for paratuberculosis reduce the occurrence of clinical disease but not all animals are protected from infection. Therefore, there is a need to understand the immune responses triggered by these vaccines at the site of infection, in circulating immune cells and their relationships to vaccine-mediated protection. The magnitude and location of gene expression related to the cell mediated immune response and cellular migration were studied in the ileum of sheep. In addition, longitudinal IP10 (also known as IP10) secretion by circulating immune cells was examined in the same sheep. Animals were grouped based on vaccination status (vaccinated vs non-vaccinated) and MAP exposure (experimentally exposed vs unexposed). Vaccination of unexposed sheep increased the expression of IP10, CCL5 and COR1c. Sheep that were successfully protected by vaccination (uninfected following experimental exposure) had significantly reduced expression of IP10 in the ileum at 12 months post exposure compared to vaccine non-responders (those that became infected) and non-vaccinated infected sheep. Successfully protected sheep also had significantly increased secretion of IP10 in in vitro stimulated immune cells from whole blood compared to vaccine non responders at 4 months post exposure. Therefore, the IP10 recall response has the potential to be used as marker for infection status in vaccinated sheep and could be a biomarker for a DIVA test in sheep.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Enfermedades de las Ovejas , Ovinos , Animales , Paratuberculosis/prevención & control , Paratuberculosis/microbiología , Quimiocina CXCL10 , Vacunas Bacterianas , Anticuerpos Antibacterianos
3.
Front Vet Sci ; 9: 1004237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504842

RESUMEN

A critical hindrance in the development of effective vaccine strategies to combat infectious disease is lack of knowledge about correlates of protection and of the host responses necessary for successful adaptive immunity. Often vaccine formulations are developed by stepwise experimentation, with incomplete investigation of the fundamental mechanisms of protection. Gudair® is a commercially available vaccine registered for use in sheep and goats for controlling spread of Mycobacterium avium sub-species paratuberculosis (MAP) infections and reduces mortality by up to 90%. Here, using an experimental infection model in sheep, we have utilized a transcriptomics approach to identify white blood cell gene expression changes in vaccinated, MAP-exposed Merino sheep with a protective response in comparison to those vaccinated animals that failed to develop immunity to MAP infection. This methodology facilitated an overview of gene-associated functional pathway adaptations using an in-silico analysis approach. We identified a group of genes that were activated in the vaccine-protected animals and confirmed stability of expression in samples obtained from naturally exposed commercially maintained sheep. We propose these genes as correlates of vaccine induced protection.

4.
Vet Immunol Immunopathol ; 252: 110482, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36122535

RESUMEN

Systemic immunisation delivered subcutaneously is currently used to control paratuberculosis, a chronic enteritis of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). These vaccines do not provide complete protection and a small cohort of animals still succumb to clinical disease. The aim of this study was to assess mycobacterial infection site-specific variations in immune cells in vaccinated sheep that did or did not develop the disease following controlled exposure to MAP. Immunohistochemical staining of terminal ileum demonstrated that vaccination increased infiltration of CD4 + T cells and B cells. Infiltration of large numbers of CD4 + T and B cells was also seen in sheep that successfully cleared infection. Vaccination promoted the polarisation of macrophages to an M1 activation state. The presence of certain cells at the site of infection, especially CD4 + T cells, is likely to contribute to vaccine success by increasing the speed and potency of the local immune response. Systemic immunisation against MAP can alter the composition of innate and adaptive immune cell populations at the predilection site for MAP infection in the ileum one year after vaccination. This informs understanding of the impact of vaccination at the site of infection and also the duration of vaccine-elicited changes. This information may assist vaccine development and allow targeting of protective immune responses in the gut of ruminants.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Enfermedades de las Ovejas , Animales , Linfocitos B , Linfocitos T CD4-Positivos , Humanos , Ovinos
5.
Front Vet Sci ; 8: 637841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33969035

RESUMEN

Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18-C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.

6.
BMC Vet Res ; 15(1): 223, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266499

RESUMEN

BACKGROUND: The role played by the humoral immune response in animals vaccinated against a mycobacterial disease such as paratuberculosis, is not well understood. Sheep vaccinated against Mycobacterium avium subsp. paratuberculosis (MAP) can still become infected and in some cases succumb to clinical disease. The strength and location of the humoral immune response following vaccination could contribute to the ability of sheep to clear MAP infection. We examined the peripheral antibody response along with the localised humoral response at the site of paratuberculosis infection, the ileum, to better understand how this contributes to MAP infection of sheep following vaccination and exposure. RESULTS: Through assessing MAP specific serum IgG1 and IgG levels we show that the timing and strength of the humoral immune response directly relates to prevention of infection following vaccination. Vaccinated sheep that subsequently became infected had significantly reduced levels of MAP specific serum IgG1 early after vaccination. In contrast, vaccinated sheep that did not subsequently become infected had significantly elevated MAP specific serum IgG1 following vaccination. Furthermore, at 12 months post MAP exposure, vaccinated and subsequently uninfected sheep had downregulated expression of genes related to the humoral response in contrast to vaccinated infected sheep where expression levels were upregulated. CONCLUSIONS: The timing and strength of the humoral immune response following vaccination against paratuberculosis in sheep directly relates to subsequent infection status. An initial strong IgG1 response following vaccination was crucial to prevent infection. Additionally, vaccinated uninfected sheep were able to modulate that response following apparent MAP clearance, unlike vaccinated infected animals where there was apparent dysregulation of the humoral response, which is associated with progression to clinical disease.


Asunto(s)
Vacunas Bacterianas/inmunología , Paratuberculosis/inmunología , Enfermedades de las Ovejas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/administración & dosificación , Inmunidad Humoral , Inmunoglobulina G/sangre , Masculino , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/prevención & control , Ovinos , Enfermedades de las Ovejas/microbiología , Oveja Doméstica , Vacunación/veterinaria
7.
Sci Rep ; 9(1): 8245, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160677

RESUMEN

Paratuberculosis in ruminants is caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP) however exposure does not predetermine progression to clinical disease. The pathogenesis incorporates a subclinical phase during which MAP is capable of evading host immune responses through adaptation of host cellular immune mechanisms. Presented are results of transcriptomic analysis of Merino sheep experimentally exposed to MAP and repeatedly sampled over the subclinical phase, identifying genes consistently changed over time in comparison to unexposed controls and associated with different disease outcomes. MAP exposed sheep were classified as diseased 45% (n = 9) or resilient 55% (n = 11). Significant gene expression changes were identified in the white blood cells of paucibacillary (n = 116), multibacillary (n = 98) and resilient cohorts (n = 53) compared to controls. Members of several gene families were differentially regulated, including S100 calcium binding, lysozyme function, MHC class I and class II, T cell receptor and transcription factors. The microarray findings were validated by qPCR. These differentially regulated genes are presented as putative biomarkers of MAP exposure, or of the specified disease or resilience outcomes. Further, in silico functional analysis of genes suggests that experimental MAP exposure in Merino sheep results in adaptations to cellular growth, proliferation and lipid metabolism.


Asunto(s)
Perfilación de la Expresión Génica , Mycobacterium avium subsp. paratuberculosis/fisiología , Paratuberculosis/genética , Paratuberculosis/microbiología , Ovinos/genética , Ovinos/microbiología , Animales , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
9.
Vet Med Sci ; 4(4): 288-295, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29974632

RESUMEN

Johne's disease is an economically important ruminant disease predominantly affecting cattle, sheep and goats. The economic losses are due to early culling, reduced growth rate, progressive weight loss and reduced production. It is caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease was reported in cattle in Bhutan, based on clinical signs and histopathology; in the late 1990s samples from one mithun that was suspected to have died due to this disease was confirmed by molecular testing at the Faculty of Veterinary Science, University of Sydney, Australia. However, no detailed study on prevalence of JD has been attempted in Bhutan. Objective of this study was to conduct serosurveillance to determine the national prevalence of Johne's disease in cattle for the period 2013-2014 to provide the basis for planning a future control strategy. A national serosurvey was conducted wherein a two-stage sampling procedure was used with 95% confidence and an error level of ±0.05. The sample size required for the survey was calculated using the software-Survey Toolbox for Livestock Diseases, available as Epitools at http://www.ausvet.com.au. A total of 1123 serum samples were collected from an administrative structure of 52 villages, 40 sub-districts and 15 districts. Serum samples were tested using commercially available antibody enzyme linked immunosorbent assay. Statistical analysis was performed using GraphPad Prism 5.0. Illustration such as maps was produced using QGIS version 2.18 'Las Palmas. The mean national apparent prevalence of Johne's disease was found to be 2.31 (26/1123) (95% CI: 0.80-4.50) with an estimated true prevalence was found to be 8.00 (95% CI: 2.00-17.00). Trongsa district had the highest prevalence (12.96) followed by Zhemgang (4.34), Lhuntse (4.25), Sarpang (3.89), Bumthang (3.60), Trashigang (2.67) and Haa (2.63). Prevalence for all other districts was 2.00 or below. Seropositive samples were reported from all over the country with varying levels of sero-positivity. In the recent past many more cattle were imported from India to boost dairy production. Nevertheless, the wide distribution of seroreactive JD cattle all over the country is a concern for future control. Therefore, in future, a detailed study on the impact of cattle import with regard to disease incursion such as Johne's disease and other diseases should be undertaken.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/epidemiología , Animales , Anticuerpos Antibacterianos/sangre , Bután/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Paratuberculosis/microbiología , Prevalencia , Estudios Seroepidemiológicos
10.
Pathog Dis ; 76(3)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718267

RESUMEN

Experimental trials in the natural host are essential for development and screening of effective vaccines. For chronic diseases of livestock such as paratuberculosis, these can be lengthy and costly in nature. An alternative is to screen vaccines in vitro; however, previous studies have found that vaccine success in vitro in existing screening assays does not translate to in vivo efficacy. To overcome these issues, we have developed a system that combines both in vivo and in vitro aspects. We hypothesise that the effectiveness of vaccine-induced immune responses mounted in vivo could be gauged by assessing the ability of immune cells to 'control' an in vitro infection. Monocytes from Merino wethers (n = 45) were infected with Mycobacterium avium subspecies paratuberculosis (MAP) in vitro, cultured with autologous lymphocytes and remaining viable intracellular MAP was quantified. Cells from MAP exposed sheep had a higher capacity to kill intracellular MAP compared to non-exposed controls (P = 0.002). Importantly, cells from MAP exposed uninfected sheep had a greater capacity to kill intracellular MAP compared to vaccinated animals that were infected (ineffective vaccination), indicating that this in vitro assay has the potential to gauge actual protectiveness, or lack thereof, of a vaccine.


Asunto(s)
Inmunidad Adaptativa , Citotoxicidad Inmunológica , Inmunoensayo , Linfocitos/inmunología , Monocitos/inmunología , Mycobacterium avium subsp. paratuberculosis/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Castración , Técnicas de Cocultivo , Recuento de Colonia Microbiana , Memoria Inmunológica , Linfocitos/citología , Masculino , Monocitos/microbiología , Mycobacterium avium subsp. paratuberculosis/crecimiento & desarrollo , Paratuberculosis/inmunología , Paratuberculosis/microbiología , Paratuberculosis/prevención & control , Ovinos , Potencia de la Vacuna
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA