Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Environ Toxicol Chem ; 43(6): 1378-1389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38661477

RESUMEN

Octahydro-tetramethyl-naphthalenyl-ethanone (OTNE) is a high-production volume fragrance material used in various down-the-drain consumer products. To assess aquatic risk, the Research Institute for Fragrance Materials (RIFM) uses a tiered data-driven framework to determine a risk characterization ratio, where the ratio of the predicted-environmental concentration to the predicted-no-effect concentration (PNEC) of <1 indicates an acceptable level of risk. Owing to its high production volume and the conservative nature of the RIFM framework, RIFM identified the need to utilize a species sensitivity distribution (SSD) approach to reduce the PNEC uncertainty for OTNE. Adding to the existing Daphnia magna, Danio rerio, and Desmodesmus subspicatus chronic studies, eight new chronic toxicity studies were conducted on the following species: Navicula pelliculosa, Chironomus riparius, Lemna gibba, Ceriodaphnia dubia, Hyalella azteca, Pimephales promelas, Anabaena flos-aquae, and Daphnia pulex. All toxicity data were summarized as chronic 10% effect concentration estimates using the most sensitive biological response. Daphnia magna was the most sensitive (0.032 mg/L), and D. subspicatus was the least sensitive (>2.6 mg/L, the OTNE solubility limit). The 5th percentile hazardous concentration (HC5) derived from the cumulative probability distribution of the chronic toxicity values for the 11 species was determined to be 0.0498 mg/L (95% confidence interval 0.0097-0.1159 mg/L). A series of "leave-one-out" and "add-one-in" simulations indicated the SSD was stable and robust. Add-one-in simulations determined that the probability of finding a species sensitive enough to lower the HC5 two- or threefold was 1/504 and 1/15,300, respectively. Given the high statistical confidence in this robust SSD, an additional application factor protection is likely not necessary. Nevertheless, to further ensure the protection of the environment, an application factor of 2 to the HC5, resulting in a PNEC of 0.0249 mg/L, is recommended. When combined with environmental exposure information, the overall hazard assessment is suitable for a probabilistic environmental risk assessment. Environ Toxicol Chem 2024;43:1378-1389. © 2024 SETAC.


Asunto(s)
Naftalenos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Medición de Riesgo , Naftalenos/toxicidad , Naftalenos/química , Daphnia/efectos de los fármacos , Perfumes/toxicidad , Pruebas de Toxicidad Crónica , Chironomidae/efectos de los fármacos , Pez Cebra , Cladóceros/efectos de los fármacos
2.
Integr Environ Assess Manag ; 19(5): 1188-1191, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421247

RESUMEN

The weight of evidence (WoE) approach conflates the aspects of quality, reliability, relevance, and consistency of data and information to systematically strengthen the body of evidence and enable credible communication and decision-making on chemical risk assessment. Between 2015 and 2019, the Society of Environmental Toxicology and Chemistry (SETAC) held several workshops in all the geographical units with scientists and managers from academia, government, and business sectors focusing on the chemical risk-assessment approach. This article summarizes the knowledge that informs the needs concerning application of WoE, especially in the context of developing countries. This effort supports the use of existing data and test strategies for assessing chemical toxicity, exposure, and risk, and highlights the critical process for risk assessors to convey and discuss information sufficiency and uncertainty mitigation strategy with risk managers. This article complements the four articles in the special series that provide a critical review of existing frameworks for chemical risk screening and management, and applications of the WoE approach for assessing exposure in the aquatic environment, prediction of fish toxicity, and bioaccumulation. Collectively, the articles exemplify the use of WoE approaches to evaluate chemicals that are data rich and/or data poor for decision-making. They integrate the WoE concepts and approaches into practical considerations and guidance, and help to scale the value of WoE in supporting sound chemical risk assessment and science-based policy implementation. Integr Environ Assess Manag 2023;19:1188-1191. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecotoxicología , Objetivos , Animales , Reproducibilidad de los Resultados , Medición de Riesgo
3.
Environ Res ; 231(Pt 3): 116282, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257746

RESUMEN

Cationic polymer (CP) ecotoxicity is important to understand and investigate as they are widely used in industrial and consumer applications and have shown toxic effects in some aquatic organisms. CPs are identified as "polymers of concern" and are to be prioritized in upcoming regulatory reviews, (e.g., REACH). Algae have generally been found to be the most sensitive trophic level to CP. This study aimed at elucidating the magnitude of cationic polyquaternium toxicity towards algae and to understand key toxicological drivers. A suite of polyquaterniums with varying charge density (charged nitrogen moieties) and molecular weight were selected. Highly charged polyquaternium-6 and -16 were toxic towards the freshwater green microalgae Raphidocelis subcapitata with ErC50-values ranging between 0.12 and 0.41 mg/L. Lower charge density polyquaternium-10 materials had much lower toxicity with ErC50 > 200 mg/L, suggesting that charge density is an important driver of algal toxicity. These levels of toxicity were in line with historic CP data in literature. Algal agglomeration was observed in all tests but was not linked with impacts on algal growth rate. However, agglomeration can pose challenges in the technical conduct of tests and can impair interpretation of results. The toxicity mitigation potential of humic acid was also explored. The addition of 2-20 mg/L humic acid completely mitigated PQ6 and PQ16 toxicity at concentrations higher than clean water ErC50-values. CP toxicity mitigation has also been observed in fish and invertebrate tests, suggesting that CP mitigation should be accounted for in all trophic levels within an environmental safety framework.


Asunto(s)
Chlorophyta , Contaminantes Químicos del Agua , Animales , Sustancias Húmicas , Contaminantes Químicos del Agua/toxicidad , Polímeros/toxicidad , Agua Dulce , Cationes/toxicidad
4.
Integr Environ Assess Manag ; 19(5): 1220-1234, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35049115

RESUMEN

Acute fish toxicity (AFT) is a key endpoint in nearly all regulatory implementations of environmental hazard assessments of chemicals globally. Although it is an early tier assay, the AFT assay is complex and uses many juvenile fish each year for the registration and assessment of chemicals. Thus, it is imperative to seek animal alternative approaches to replace or reduce animal use for environmental hazard assessments. A Bayesian Network (BN) model has been developed that brings together a suite of lines of evidence (LoEs) to produce a probabilistic estimate of AFT without the testing of additional juvenile fish. Lines of evidence include chemical descriptors, mode of action (MoA) assignment, knowledge of algal and daphnid acute toxicity, and animal alternative assays such as fish embryo tests and in vitro fish assays (e.g., gill cytotoxicity). The effort also includes retrieval, assessment, and curation of quality acute fish toxicity data because these act as the baseline of comparison with model outputs. An ideal outcome of this effort would be to have global applicability, acceptance and uptake, relevance to predominant fish species used in chemical assessments, be expandable to allow incorporation of future knowledge, and data to be publicly available. The BN model can be conceived as having incorporated principles of tiered assessment and whose outcomes will be directed by the available evidence in combination with prior information. We demonstrate that, as additional evidence is included in the prediction of a given chemical's ecotoxicity profile, both the accuracy and the precision of the predicted AFT can increase. Ultimately an improved environmental hazard assessment will be achieved. Integr Environ Assess Manag 2023;19:1220-1234. © 2022 SETAC.


Asunto(s)
Embrión no Mamífero , Peces , Animales , Pruebas de Toxicidad Aguda , Teorema de Bayes , Embrión no Mamífero/metabolismo , Exactitud de los Datos , Medición de Riesgo
5.
Integr Environ Assess Manag ; 19(2): 312-325, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35649733

RESUMEN

Historically, polymers have been excluded from registration and evaluation under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program, the European chemical management program. Recently, interest has increased to include polymers. A tiered registration system has been envisioned and would begin with classes of polymers of greater interest based on certain properties. Cationic polymers are one such class. There is a pressing need to understand the quality and limitations of historical cationic polymer studies and to identify key sources of uncertainty in environmental hazard assessments so we can move toward scientifically robust analyses. To that end, we performed a critical review of the existing cationic polymer environmental effects literature to evaluate polymer characterization and test methodologies to understand how these parameters may affect test interpretation. The relationship between physicochemical parameters, acute and chronic toxicity, and relative trophic level sensitivity were explored. To advance our understanding of the environmental hazard and subsequent risk characterization of cationic polymers, there is a clear need for a consistent testing approach as many polymers are characterized as difficult-to-test substances. Experimental parameters such as dissolved organic carbon and solution renewal approaches can alter cationic polymer bioavailability and toxicity. It is recommended that OECD TG 23 "Aqueous-Phase Aquatic Toxicity Testing of Difficult Test Substances" testing considerations be applied when conducting environmental toxicity assays with cationic polymers. Integr Environ Assess Manag 2023;19:312-325. © 2021 SETAC.


Asunto(s)
Sustancias Peligrosas , Polímeros , Polímeros/toxicidad , Pruebas de Toxicidad , Medición de Riesgo/métodos
6.
Environ Toxicol Chem ; 41(9): 2259-2272, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703088

RESUMEN

Cationic polymers are considered by the scientific and regulatory communities as a group of greater interest amongst the polymers in commerce. As a category, relatively little hazard information is available in the public literature. Very few examples exist of published, high-quality polymer characterization and quantification of exposure. In the present study we describe a series of fish embryo toxicity (FET) and fish gill cytotoxicity assays used to establish a baseline understanding of several representative polyquaternium categories (PQ-6, PQ-10, PQ-16) in animal alternative models, accompanied by high-quality analytical characterization. Materials were chosen to encompass a range of molecular weights and charge densities to determine the influence of test material characteristics on toxicity. Both chorionated and dechorionated FET assays were generally similar to published acute fish toxicity data. Toxicity was correlated with cationic polymer charge density, and not with molecular weight, and was a combination of physical effects and likely toxicity at the site of action. Toxicity could be ameliorated by humic acid in a dose-dependent manner. Fish gill cytotoxicity results were orders of magnitude less sensitive than FET test responses. Environ Toxicol Chem 2022;41:2259-2272. © 2022 SETAC.


Asunto(s)
Embrión no Mamífero , Branquias , Animales , Ecotoxicología , Peces , Polímeros/toxicidad , Pruebas de Toxicidad Aguda/métodos
7.
Environ Toxicol Chem ; 41(1): 134-147, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34918372

RESUMEN

The cladocerans Daphnia magna and Ceriodaphnia dubia have been used for decades to assess the hazards of chemicals and effluents, but toxicity data for these species have traditionally been treated separately. Numerous standard acute and chronic test guidelines have been developed for both species. In the present study, data were compiled and curated for acute survival (48 h) and growth and reproduction tests with D. magna (21 days chronic) and C. dubia (7 days chronic) toxicity assays. Orthogonal regressions were developed to statistically compare the acute and chronic sensitivity of D. magna and C. dubia across a diversity of chemicals and modes of action. Acute orthogonal regressions between D. magna and D. pulex, a widely accepted surrogate species, were used to set a data-driven benchmark for what would constitute a suitable D. magna surrogate. The results indicate that there is insufficient evidence to suggest a difference in acute or chronic sensitivity of D. magna and C. dubia in standard toxicity tests. Further, the variability in the acute D. magna and C. dubia regressions were of the same magnitude as that in D. magna and D. pulex regressions. Slope and y-intercept values were also comparable. The absence of significant differences in toxicity values suggests similar species sensitivity in standard tests across a range of chemical classes and modes of action. Environ Toxicol Chem 2022;41:134-147. © 2021 SETAC.


Asunto(s)
Cladóceros , Contaminantes Químicos del Agua , Animales , Daphnia , Reproducción , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/toxicidad
9.
Chemosphere ; 263: 127804, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297001

RESUMEN

Algal toxicity studies are required by regulatory agencies for a variety of purposes including classification and labeling and environmental risk assessment of chemicals. Algae are also frequently the most sensitive taxonomic group tested. Acute to chronic ratios (ACRs) have been challenging to derive for algal species because of the complexities of the underlying experimental data including: a lack of universally agreed upon algal inhibition endpoints; evolution of experimental designs over time and by different standardization authorities; and differing statistical approaches (e.g., regression versus hypothesis-based effect concentrations). Experimental data for developing globally accepted algal ACRs have been limited because of data availability, and in most regulatory frameworks an ACR of 10 is used regardless of species, chemical type or mode of action. Acute and chronic toxicity (inhibition) data on 17 algal species and 442 chemicals were compiled from the EnviroTox database (https://envirotoxdatabase.org/) and a proprietary database of algal toxicity records. Information was probed for growth rate, yield, and final cell density endpoints focusing primarily on studies of 72 and 96 h duration. Comparisons of acute and chronic data based on either single (e.g., growth rate) and multiple (e.g., growth rate, final cell density) endpoints were used to assess acute and chronic relationships. Linear regressions of various model permutations were used to compute ACRs for multiple combinations of taxa, chemicals, and endpoints, and showed that ACRs for algae were consistently around 4 (ranging from 2.43 to 5.62). An ACR of 4 for algal toxicity is proposed as an alternative to a default value of 10, and recommendations for consideration and additional research and development are provided.


Asunto(s)
Contaminantes Químicos del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad
10.
Ecotoxicol Environ Saf ; 198: 110684, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32408188

RESUMEN

The science of species sensitivity distributions (SSDs) is a blend of statistical theory, ecotoxicological testing, study reliability, and biodiversity. The utility of SSDs has been well reviewed and they are viewed as a high tier assessment tool in environmental risk assessment and other disciplines. SSDs seek to improve upon probabilistic extrapolation of laboratory (and sometimes field) collected ecotoxicity data for environmental protection by modeling the diversity of multiple experimental results in the form of a single statistical distribution which reduces or eliminates the need for extrapolation with deterministic assessment factors. SSDs thus depend heavily on both statistical and biological knowledge. In this commentary we review recently published literature identifying areas of improvement based on fundamental statistical theory or application in environmental assessment contexts. We reveal that sound application of SSDs relies heavily upon a grasp of probability distributions, how asymmetric confidence intervals are derived for distributions common to SSDs, the influence of sample size on parameter estimation, and how these are collectively applied across the myriad of regulatory systems globally. Statisticians and ecotoxicologists are inextricably bound together in the goal of actually improving hazard assessment using both probabilistic and deterministic methodologies.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecotoxicología/métodos , Modelos Estadísticos , Animales , Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecotoxicología/estadística & datos numéricos , Probabilidad , Reproducibilidad de los Resultados , Medición de Riesgo , Tamaño de la Muestra , Sensibilidad y Especificidad , Especificidad de la Especie
11.
Integr Environ Assess Manag ; 16(4): 452-460, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32125082

RESUMEN

The use of fish embryo toxicity (FET) data for hazard assessments of chemicals, in place of acute fish toxicity (AFT) data, has long been the goal for many environmental scientists. The FET test was first proposed as a replacement to the standardized AFT test nearly 15 y ago, but as of now, it has still not been accepted as a standalone replacement by regulatory authorities such as the European Chemicals Agency (ECHA). However, the ECHA has indicated that FET data can be used in a weight of evidence (WoE) approach, if enough information is available to support the conclusions related to the hazard assessment. To determine how such a WoE approach could be applied in practice has been challenging. To provide a conclusive WoE for FET data, we have developed a Bayesian network (BN) to incorporate multiple lines of evidence to predict AFT. There are 4 different lines of evidence in this BN model: 1) physicochemical properties, 2) AFT data from chemicals in a similar class or category, 3) ecotoxicity data from other trophic levels of organisms (e.g., daphnids and algae), and 4) measured FET data. The BN model was constructed from data obtained from a curated database and conditional probabilities assigned for the outcomes of each line of evidence. To evaluate the model, 20 data-rich chemicals, containing a minimum of 3 AFT and FET test data points, were selected to ensure a suitable comparison could be performed. The results of the AFT predictions indicated that the BN model could accurately predict the toxicity interval for 80% of the chemicals evaluated. For the remaining chemicals (20%), either daphnids or algae were the most sensitive test species, and for those chemicals, the daphnid or algal hazard data would have driven the environmental classification. Integr Environ Assess Manag 2020;16:452-460. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecotoxicología , Medición de Riesgo , Animales , Teorema de Bayes , Embrión no Mamífero , Peces , Pruebas de Toxicidad Aguda
14.
Toxicol Sci ; 169(2): 353-364, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825313

RESUMEN

Predicting fish acute toxicity of chemicals in vitro is an attractive alternative method to the conventional approach using juvenile and adult fish. The rainbow trout (Oncorhynchus mykiss) cell line assay with RTgill-W1 cells has been designed for this purpose. It quantifies cell viability using fluorescent measurements for metabolic activity, cell- and lysosomal-membrane integrity on the same set of cells. Results from over 70 organic chemicals attest to the high predictive capacity of this test. We here report on the repeatability (intralaboratory variability) and reproducibility (interlaboratory variability) of the RTgill-W1 cell line assay in a round-robin study focusing on 6 test chemicals involving 6 laboratories from the industrial and academic sector. All participating laboratories were able to establish the assay according to preset quality criteria even though, apart from the lead laboratory, none had previously worked with the RTgill-W1 cell line. Concentration-response modeling, based on either nominal or geometric mean-derived measured concentrations, yielded effect concentrations (EC50) that spanned approximately 4 orders of magnitude over the chemical range, covering all fish acute toxicity categories. Coefficients of variation for intralaboratory and interlaboratory variability for the average of the 3 fluorescent cell viability measurements were 15.5% and 30.8%, respectively, which is comparable to other fish-derived, small-scale bioassays. This study therefore underlines the robustness of the RTgill-W1 cell line assay and its accurate performance when carried out by operators in different laboratory settings.


Asunto(s)
Pruebas de Toxicidad Aguda/métodos , Compuestos de Anilina/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Laboratorios , Oncorhynchus mykiss , Reproducibilidad de los Resultados
15.
Environ Toxicol Chem ; 38(5): 1062-1073, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714190

RESUMEN

Flexible, rapid, and predictive approaches that do not require the use of large numbers of vertebrate test animals are needed because the chemical universe remains largely untested for potential hazards. Development of robust new approach methodologies and nontesting approaches requires the use of existing information via curated, integrated data sets. The ecological threshold of toxicological concern (ecoTTC) represents one such new approach methodology that can predict a conservative de minimis toxicity value for chemicals with little or no information available. For the creation of an ecoTTC tool, a large, diverse environmental data set was developed from multiple sources, with harmonization, characterization, and information quality assessment steps to ensure that the information could be effectively organized and mined. The resulting EnviroTox database contains 91 217 aquatic toxicity records representing 1563 species and 4016 unique Chemical Abstracts Service numbers and is a robust, curated database containing high-quality aquatic toxicity studies that are traceable to the original information source. Chemical-specific information is also linked to each record and includes physico-chemical information, chemical descriptors, and mode of action classifications. Toxicity data are associated with the physico-chemical data, mode of action classifications, and curated taxonomic information for the organisms tested. The EnviroTox platform also includes 3 analysis tools: a predicted-no-effect concentration calculator, an ecoTTC distribution tool, and a chemical toxicity distribution tool. Although the EnviroTox database and tools were originally developed to support ecoTTC analysis and development, they have broader applicability to the field of ecological risk assessment. Environ Toxicol Chem 2019;9999:1-12. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Bases de Datos Factuales , Ecotoxicología , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Medición de Riesgo , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
16.
Environ Toxicol Chem ; 38(3): 671-681, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30615221

RESUMEN

A database was compiled for algal Organisation for Economic Co-operation and Development (OECD) test guideline 201, for Daphnia magna OECD test guideline 202, for the acute fish toxicity (AFT) OECD test guideline 203, and for the fish embryo toxicity (FET) OECD test guideline 236 to assess the suitability and applicability of the FET test in a threshold approach context. In the threshold approach, algal and Daphnia toxicity are assessed first, after which a limit test is conducted at the lower of the 2 toxicity values using fish. If potential fish toxicity is indicated, a full median lethal concentration assay is performed. This tiered testing strategy can significantly reduce the number of fish used in toxicity testing because algae or Daphnia are typically more sensitive than fish. A total of 165 compounds had AFT and FET data available, and of these, 82 had algal and Daphnia acute toxicity data available. Algae and Daphnia were more sensitive 75 to 80% of the time. Fish or FET tests were most sensitive 20 and 16% of the time, respectively, when considered as the sole fish toxicity indicator and 27% of the time when both were considered simultaneously. When fish were the most sensitive trophic level, different compounds were identified as the most toxic in FET and to AFT tests; however, the differences were not so large that they resulted in substantially different outcomes when potencies were binned using the United Nations categories of aquatic toxicity under the Globally Harmonized System for classification and labeling. It is recommended that the FET test could be used to directly replace the AFT test in the threshold approach or could be used as the definitive test if an AFT limit test indicated toxicity potential for a chemical. Environ Toxicol Chem 2019;38:671-681. © 2019 SETAC.


Asunto(s)
Peces , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Daphnia/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Embrión no Mamífero/efectos de los fármacos , Peces/embriología , Guías como Asunto , Organización para la Cooperación y el Desarrollo Económico
17.
Environ Toxicol Chem ; 37(11): 2745-2757, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30359486

RESUMEN

Since the 1940s, effluent toxicity testing has been used to assess potential ecological impacts of effluents and help determine necessary treatment options for environmental protection prior to release. Strategic combinations of toxicity tests, analytical tools, and biological monitoring have been developed. Because the number of vertebrates utilized in effluent testing is thought to be much greater than that used for individual chemical testing, there is a new need to develop strategies to reduce the numbers of vertebrates (i.e., fish) used. This need will become more critical as developing nations begin to use vertebrates in toxicity tests to assess effluent quality. A workshop was held to 1) assess the state of science in effluent toxicity testing globally; 2) determine current practices of regulators, industry, private laboratories, and academia; and 3) explore alternatives to vertebrate (fish) testing options and the inclusion of modified/new methods and approaches in the regulatory environment. No single approach was identified, because of a range of factors including regulatory concerns, validity criteria, and wider acceptability of alternatives. However, a suite of strategies in a weight-of-evidence approach would provide the flexibility to meet the needs of the environment, regulators, and the regulated community; and this "toolbox" approach would also support reduced reliance on in vivo fish tests. The present Focus article provides a brief overview of wastewater regulation and effluent testing approaches. Alternative methodologies under development and some of the limitations and barriers to regulatory approaches that can be selected to suit individual country and regional requirements are described and discussed. Environ Toxicol Chem 2018;37:2745-2757. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Internacionalidad , Medición de Riesgo , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/análisis , Animales , Humanos , Control Social Formal
18.
Chemosphere ; 206: 539-548, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29778079

RESUMEN

Short to long chain alcohols have a range of ecotoxicity to aquatic life driven by hydrophobic interactions with biological membranes. Carbon chain length and octanol:water partitioning coefficients are surrogates for hydrophobicity and strongly relate to aquatic toxicity. In these investigations, the toxicity of ethanol to 1-n-dodecanol to juvenile fish in standard acute toxicity tests is reviewed. Toxicity tests employing fish embryos (zebrafish Danio rerio and fathead minnow Pimephales promelas) in the Fish Embryo Test (OECD 236) format were conducted from C2 to C10 to compare against standard juvenile fish toxicity. Quantitative structure activity relationships for FET and fish individually and combined demonstrate that embryos are not different in sensitivity to juvenile fish. A combined QSAR was developed of the form Log 96 h LC50 (mM/L) = -0.925*log Kow + 2.060 (R2 10 = 0.954). Alcohols of 11-12 carbons show a deflection in the QSAR as toxicity approaches the solubility limit. Alcohols with longer chain lengths may only be tested at lower exposures relevant for chronic toxicity. Decanol was evaluated in a 33-d fish early life stage test (OECD 210) and survival was the most sensitive endpoint (EC10 = 0.43 mg/L, 0.0027 mM/L). This study suggests a reasonable acute to chronic ratio of 6.5 in line with historical literature for non-polar narcotic compounds. Fish are not uniquely more sensitive than Daphnia magna which suggests estimations of environmental hazard can be confidently made with either taxon. The overall environmental risk assessments for the longer chain alcohols included in this research remain largely unchanged primarily due to previous research demonstrating a very minimal environmental exposure even for highly toxic members of the category.


Asunto(s)
Alcoholes/química , Contaminantes Químicos del Agua/toxicidad , Animales , Peces
19.
Environ Toxicol Chem ; 37(6): 1565-1578, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29350430

RESUMEN

The fish acute toxicity test method is foundational to aquatic toxicity testing strategies, yet the literature lacks a concise sample size assessment. Although various sources address sample size, historical precedent seems to play a larger role than objective measures. We present a novel and comprehensive quantification of the effect of sample size on estimation of the median lethal concentration (LC50), covering a wide range of scenarios. The results put into perspective the practical differences across a range of sample sizes, from n = 5/concentration up to n = 23/concentration. We also provide a framework for setting sample size guidance illustrating ways to quantify the performance of LC50 estimation, which can be used to set sample size guidance given reasonably difficult (or worst-case) scenarios. There is a clear benefit to larger sample size studies: they reduce error in the determination of LC50s, and lead to more robust safe environmental concentration determinations, particularly in cases likely to be called worst-case (shallow slope and true LC50 near the edges of the concentration range). Given that the use of well-justified sample sizes is crucial to reducing uncertainty in toxicity estimates, these results lead us to recommend a reconsideration of the current de minimis 7/concentration sample size for critical studies (e.g., studies needed for a chemical registration, which are being tested for the first time, or involving difficult test substances). Environ Toxicol Chem 2018;37:1565-1578. © 2018 SETAC.


Asunto(s)
Peces , Pruebas de Toxicidad Aguda/métodos , Animales , Tamaño de la Muestra , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...