Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genesis ; 62(2): e23595, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38553878

RESUMEN

Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.


Asunto(s)
Neuronas , Bulbo Olfatorio , Ratones , Animales , Bulbo Olfatorio/fisiología , Neuronas/fisiología , Neurogénesis/fisiología , Encéfalo
2.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383587

RESUMEN

Obesity results from excessive caloric input associated with overeating and presents a major public health challenge. The hypothalamus has received significant attention for its role in governing feeding behavior and body weight homeostasis. However, extrahypothalamic brain circuits also regulate appetite and consumption by altering sensory perception, motivation, and reward. We recently discovered a population of basal forebrain cholinergic (BFc) neurons that regulate appetite suppression. Through viral tracing methods in the mouse model, we found that BFc neurons densely innervate the basolateral amygdala (BLA), a limbic structure involved in motivated behaviors. Using channelrhodopsin-assisted circuit mapping, we identified cholinergic responses in BLA neurons following BFc circuit manipulations. Furthermore, in vivo acetylcholine sensor and genetically encoded calcium indicator imaging within the BLA (using GACh3 and GCaMP, respectively) revealed selective response patterns of activity during feeding. Finally, through optogenetic manipulations in vivo, we found that increased cholinergic signaling from the BFc to the BLA suppresses appetite and food intake. Together, these data support a model in which cholinergic signaling from the BFc to the BLA directly influences appetite and feeding behavior.


Asunto(s)
Prosencéfalo Basal , Complejo Nuclear Basolateral , Ratones , Animales , Complejo Nuclear Basolateral/fisiología , Prosencéfalo Basal/fisiología , Neuronas Colinérgicas/fisiología , Colinérgicos , Ingestión de Alimentos/fisiología
3.
Cell Rep ; 42(12): 113471, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37980561

RESUMEN

Co-transmission of multiple neurotransmitters from a single neuron increases the complexity of signaling information within defined neuronal circuits. Superficial short-axon cells in the olfactory bulb release both dopamine and γ-aminobutyric acid (GABA), yet the specific targets of these neurotransmitters and their respective roles in olfaction have remained unknown. Here, we implement intersectional genetics in mice to selectively block GABA or dopamine release from superficial short-axon cells to identify their distinct cellular targets, impact on circuit function, and behavioral contribution of each neurotransmitter toward olfactory behaviors. We provide functional and anatomical evidence for divergent superficial short-axon cell signaling onto downstream neurons to shape patterns of mitral cell firing that contribute to olfactory-related behaviors.


Asunto(s)
Bulbo Olfatorio , Olfato , Ratones , Animales , Bulbo Olfatorio/fisiología , Olfato/fisiología , Dopamina , Interneuronas/fisiología , Ácido gamma-Aminobutírico , Neurotransmisores
4.
Sci Total Environ ; 856(Pt 2): 159170, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36198349

RESUMEN

Groundwater quality is of increasing concern due to the ubiquitous occurrence of micropollutant mixtures. Stream-groundwater interactions near agricultural and urban areas represent an important entry pathway of micropollutants into shallow aquifers. Here, we evaluated the biotransformation of a micropollutant mixture (i.e., caffeine, metformin, atrazine, terbutryn, S-metolachlor and metalaxyl) during lateral stream water flow to adjacent groundwater. We used an integrative approach combining concentrations and transformation products (TPs) of the micropollutants, compound-specific isotope analysis (δ13C and δ15N), sequencing of 16S rRNA gene amplicons and reactive transport modeling. Duplicate laboratory aquifers (160 cm × 80 cm × 7 cm) were fed with stream water and subjected over 140 d to three successive periods of micropollutant exposures as pulse-like (6000 µg L-1) and constant (600 µg L-1) injections under steady-state conditions. Atrazine, terbutryn, S-metolachlor and metalaxyl persisted in both aquifers during all periods (<10 % attenuation). Metformin attenuation (up to 14 %) was only observed from 90 d onwards, suggesting enhanced degradation over time. In contrast, caffeine dissipated during all injection periods (>90 %), agreeing with fast degradation rates (t1/2 < 3 d) in parallel microcosm experiments and detection of TPs (theobromine and xanthine). Significant stable carbon isotope fractionation (Δδ13C ≥ 6.6 ‰) was observed for caffeine in both aquifers, whereas no enrichment in 15N occurred. A concentration dependence of caffeine biotransformation in the aquifers was further suggested by model simulations following Michaelis-Menten kinetics. Changes in bacterial community composition reflected long-term bacterial adaptation to micropollutant exposures. Altogether, the use of an integrative approach can help to understand the interplay of subsurface hydrochemistry, bacterial adaptations and micropollutants biotransformation during stream-groundwater interactions.


Asunto(s)
Atrazina , Agua Subterránea , Metformina , Contaminantes Químicos del Agua , Atrazina/análisis , ARN Ribosómico 16S , Cafeína/análisis , Agua Subterránea/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
5.
J Contam Hydrol ; 249: 104045, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759890

RESUMEN

In this study, a novel experimental setup is proposed for which a column filled with glass beads and parallelepiped-shaped limestone beams is used to reconstruct a multiple fracture limestone media. The proposed setup produces asymmetric breakthrough curves (BTCs) that are consistent with the shape expected from the past field and lab-scale studies. Three transport experiments have been conducted under fast, medium, and slow flow velocity conditions. The research focuses on parameter and state estimation using Bayesian inference via Markov Chain Monte Carlo (MCMC) sampler, investigating the degree to which three models of transport through fractured media can reproduce the experimental results under the three flow conditions. The first transport model, named ADE, is based on the equivalent porous medium (EPM) approach and corresponds to the linear advection dispersion equation (ADE). The second model, named FOMIM (first-order mobile immobile), is based on the mobile/immobile approach and uses the dual porosity model with a linear first-order transfer between mobile and immobile regions. The third model, named NLMIM (non-linear mobile-immobile), uses a nonlinear transfer function between these two regions. The results of the three models show that almost all the unknown model input parameters can be well-estimated with narrow confidence intervals using the MCMC method. With respect to state estimation, the ADE model fails to reproduce correctly the tail of the BTCs observed under slow and medium flow conditions. The FOMIM model improves the tailing of the BTCs, but significant discrepancies remain between simulated and measured concentrations. The NLMIM model with velocity-dependent parameters is the only model that captures BTCs under all three conditions of slow, medium, and fast flow velocities.


Asunto(s)
Carbonato de Calcio , Modelos Teóricos , Teorema de Bayes , Método de Montecarlo , Porosidad , Movimientos del Agua
6.
IBRO Neurosci Rep ; 12: 390-398, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35601692

RESUMEN

The lateral septal nucleus (LSN) is a highly interconnected region of the central brain whose activity regulates widespread circuitry. As such, the mechanisms that govern neuronal activity within the LSN have far-reaching implications on numerous brain-wide nuclei, circuits, and behaviors. We found that GABAergic neurons within the LSN express markers that mediate the release of acetylcholine (ACh). Moreover, we show that these vGATLSN neurons release both GABA and ACh onto local glutamatergic LSN neurons. Using both short-term and long-term neuronal labeling techniques we observed expression of the cholinergic neuron marker Choline Acetyltransferase (ChAT) in vGATLSN neurons. These findings provide evidence of cholinergic neurotransmission from vGATLSN neurons, and provide an impetus to examine dynamic co-neurotransmission changes as a potential mechanism that contributes to neuronal and circuit-wide plasticity within the LSN.

7.
Genes Dev ; 36(21-24): 1100-1118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36617877

RESUMEN

Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Ratones , Animales , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Neuronas/fisiología , Bulbo Olfatorio/metabolismo , Neurogénesis
8.
Water Res ; 203: 117530, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388502

RESUMEN

Dichloromethane (DCM) is a toxic industrial solvent frequently detected in multi-contaminated aquifers. It can be degraded biotically or abiotically, and under oxic or anoxic conditions. The extent and pathways of DCM degradation in aquifers may thus depend on water table fluctuations and microbial responses to hydrochemical variations. Here, we examined the effect of water table fluctuations on DCM biodegradation in two laboratory aquifers fed with O2-depleted DCM-spiked groundwater from a well-characterized former industrial site. Hydrochemistry, stable isotopes of DCM (δ13C and δ37Cl), and bacterial community composition were examined to determine DCM mass removal and degradation pathways under steady-state (static water table) and transient (fluctuating water table) conditions. DCM mass removal was more pronounced under transient (95%) than under steady-state conditions (42%). C and Cl isotopic fractionation values were larger under steady-state (εbulkC = -23.6 ± 3.2‰, and εbulkCl= -8.7 ± 1.6‰) than under transient conditions (εbulkC = -11.8 ± 2.0‰, and εbulkCl = -3.1 ± 0.6‰). Dual C-Cl isotope analysis suggested the prevalence of distinct anaerobic DCM degradation pathways, with ΛC/Cl values of 1.92 ± 0.30 and 3.58 ± 0.42 under steady-state and transient conditions, respectively. Water table fluctuations caused changes in redox conditions and oxygen levels, resulting in a higher relative abundance of Desulfosporosinus (Peptococcaceae family). Taken together, our results show that water table fluctuations enhanced DCM biodegradation, and correlated with bacterial taxa associated with anaerobic DCM degradation. Our integrative approach allows to evaluate anaerobic DCM degradation under dynamic hydrogeological conditions, and may help improving bioremediation strategies at DCM contaminated sites.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Isótopos de Carbono/análisis , Laboratorios , Cloruro de Metileno
9.
J Vis Exp ; (170)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33970138

RESUMEN

Brain activity, the electrochemical signals passed between neurons, is determined by the connectivity patterns of neuronal networks, and from the morphology of processes and substructures within these neurons. As such, much of what is known about brain function has arisen alongside developments in imaging technologies that allow further insight into how neurons are organized and connected in the brain. Improvements in tissue clearing have allowed for high-resolution imaging of thick brain slices, facilitating morphological reconstruction and analyses of neuronal substructures, such as dendritic arbors and spines. In tandem, advances in image processing software provide methods of quickly analyzing large imaging datasets. This work presents a relatively rapid method of processing, visualizing, and analyzing thick slices of labeled neural tissue at high-resolution using CLARITY tissue clearing, confocal microscopy, and image analysis. This protocol will facilitate efforts toward understanding the connectivity patterns and neuronal morphologies that characterize healthy brains, and the changes in these characteristics that arise in diseased brain states.


Asunto(s)
Dendritas/fisiología , Microscopía Confocal/métodos , Tejido Nervioso/fisiología , Neuronas/fisiología , Animales , Ratones
10.
Am J Obstet Gynecol ; 221(2): 146.e1-146.e23, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31055031

RESUMEN

BACKGROUND: Numerous reports have documented bacteria in the placental membranes and basal plate decidua in the absence of immunopathology using histologic techniques. Similarly, independent metagenomic characterizations have identified an altered taxonomic makeup in association with spontaneous preterm birth. Here we sought to corroborate these findings by localizing presumptive intact bacteria using molecular histology within the placental microanatomy. OBJECTIVE: Here we examined for microbes in term and preterm gestations using a signal-amplified 16S universal in situ hybridization probe set for bacterial rRNA, alongside traditional histologic methods of Warthin-Starry and Gram stains, as well as clinical culture methodologies. We further sought to differentiate accompanying 16S gene sequencing taxonomic profiles from germ-free (gnotobiotic) mouse and extraction and amplicon contamination controls. STUDY DESIGN: Placentas were collected from a total of 53 subjects, composed of term labored (n = 4) and unlabored cesarean deliveries (n = 22) and preterm vaginal (n = 18) and cesarean deliveries (n = 8); a placenta from a single subject with clinical and histologic evident choriomanionitis was employed as a positive control (n = 1). The preterm cohort included spontaneous preterm birth with (n = 6) and without (n = 10) preterm premature rupture of membranes, as well as medically indicated preterm births (n = 10). Placental microbes were visualized using an in situ hybridization probe set designed against highly conserved regions of the bacterial 16S ribosome, which produces an amplified stable signal using branched DNA probes. Extracted bacterial nucleic acids from these same samples were subjected to 16S rRNA metagenomic sequencing (Illumina, V4) for course taxonomic analysis, alongside environmental and kit contaminant controls. A subset of unlabored, cesarean-delivered term pregnancies were also assessed with clinical culture for readily cultivatable pathogenic microbes. RESULTS: Molecular in situ hybridization of bacterial rRNA enabled visualization and localization of low-abundance microbes after systematic high-power scanning. Despite the absence of clinical or histologic chorioamnionitis in 52 of 53 subjects, instances of 16S rRNA signal were confidently observed in 13 of 16 spontaneous preterm birth placentas, which was not significantly different from term unlabored cesarean specimens (18 of 22; P > .05). 16S rRNA signal was largely localized to the villous parenchyma and/or syncytiotrophoblast, and less commonly the chorion and the maternal intervillous space. In all term and unlabored cesarean deliveries, visualization of evident placental microbes by in situ hybridization occurred in the absence of clinical or histologic detection using conventional clinical cultivation, hematoxylin-eosin, and Gram staining. In 1 subject, appreciable villous bacteria localized to an infarction, where 16S microbial detection was confirmed by Warthin-Starry stain. In all instances, parallel sample principle coordinate analysis using Bray-Cutis distances of 16S rRNA gene sequencing data demonstrated consistent taxonomic distinction from all negative or potential contamination controls (P = .024, PERMANOVA). Classification from contaminant filtered data identified a distinct taxonomic makeup among term and preterm cohorts when compared with contaminant controls (false discovery rate <0.05). CONCLUSION: Presumptively intact placental microbes are visualized as low-abundance, low-biomass and sparse populations within the placenta regardless of gestational age and mode of delivery. Their taxonomic makeup is distinct from contamination controls. These findings further support several previously published findings, including our own, which have used metagenomics to characterize low-abundance and low-biomass microbial communities in the placenta.


Asunto(s)
Placenta/microbiología , ARN Ribosómico 16S , Adulto , Código de Barras del ADN Taxonómico , Femenino , Humanos , Hibridación in Situ , Metagenómica , Microbiota , Embarazo , Nacimiento Prematuro , ARN Bacteriano/análisis , Análisis de Secuencia de ARN , Nacimiento a Término
11.
BMC Microbiol ; 18(1): 28, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29621980

RESUMEN

BACKGROUND: We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). Here, we aimed to further these studies by examining alterations in the gut microbiome of juvenile Japanese macaques (Macaca fuscata) that were exposed to a maternal HFD, weaned onto a control diet, and later supplemented with a synbiotic comprised of psyllium seed and Enterococcus and Lactobacillus species. RESULTS: Eighteen month old offspring (n = 7) of 36% HFD fed dams were fed a control (14% fat) diet post weaning, then were synbiotic supplemented for 75 days and longitudinal stool and serum samples were obtained. All stool samples were subjected to 16S rRNA metagenomic sequencing, and microbiome profiles and serum lipids and triglycerides were compared to untreated, healthy age matched and diet matched controls (n = 7). Overall, 16S-based metagenomic analysis revealed that supplementation exerted minimal alterations to the gut microbiome including transient increased abundance of Lactobacillus species and decreased abundance of few bacterial genera, including Faecalibacterium and Anaerovibrio. However, serum lipid analysis revealed significant decreases in triglycerides, cholesterol, and LDL (p < 0.05). Nevertheless, supplemented juveniles challenged 4 months later were not protected from HFD-induced gut dysbiosis. CONCLUSIONS: Synbiotic supplementation is temporally associated with alterations in the gut microbiome and host lipid profiles of juvenile Japanese macaques that were previously exposed to a maternal HFD. Despite these presumptive temporal benefits, a protective effect against later HFD-challenge gut dysbiosis was not observed.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Dieta Alta en Grasa , Microbioma Gastrointestinal/fisiología , Primates/microbiología , Simbióticos , Animales , Bacterias/genética , Disbiosis/microbiología , Enterococcus/fisiología , Faecalibacterium , Heces/microbiología , Femenino , Firmicutes , Microbioma Gastrointestinal/genética , Lactobacillus/fisiología , Lípidos/sangre , Macaca/microbiología , Masculino , Redes y Vías Metabólicas , Metagenómica , Probióticos , Psyllium , ARN Ribosómico 16S/genética , Especificidad de la Especie , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...