Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 94: 62-72, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26925544

RESUMEN

Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during water sample filtration or from DNA extraction protocols. Control measurements for sample contamination are important for clean water studies.


Asunto(s)
Agua Potable/microbiología , Proteobacteria/aislamiento & purificación , Agua de Mar/microbiología , Purificación del Agua/métodos , Cloro/química , ADN Bacteriano/aislamiento & purificación , Filtración , Membranas Artificiales , Ósmosis , ARN Ribosómico 16S/genética , Microbiología del Agua , Calidad del Agua
2.
Curr Microbiol ; 63(4): 337-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21779938

RESUMEN

The efficiency of ultraviolet (UV) light disinfection of wastewater effluent using a large-scale pilot system was studied. The relationship between biofilm and siderophore production and UV doses received by Pseudomonas aeruginosa strain ATCC 15442 was determined. UV decreased pyoverdine production and enhanced biofilm production. Consequently external factors conditioned by both pyoverdine and biofilm may affect the UV effect on bacterial disinfection.


Asunto(s)
Biopelículas/efectos de la radiación , Desinfección/métodos , Pseudomonas aeruginosa/fisiología , Sideróforos/metabolismo , Microbiología del Agua , Purificación del Agua/métodos , Oligopéptidos/metabolismo , Pseudomonas aeruginosa/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...