Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 70: 105031, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33075489

RESUMEN

The increasing appearance of engineered nanomaterials in broad biomedical and industrial sectors poses an escalating health concern from unintended exposure with unknown consequences. Routine in vitro assessments of nanomaterial toxicity are a vital component to addressing these mounting health concerns; however, despite the known role of cell-cell and cell-matrix contacts in governing cell survival, these physical interactions are generally ignored. Herein, we demonstrate that exposure to amorphous silica particles destabilizes mitochondrial membrane potential, stimulates reactive oxygen species (ROS) production and promotes cytotoxicity in SH-SY5Y human neuroblastoma through mechanisms that are potently matrix dependent, with SH-SY5Y cells plated on the softest matrix displaying a near complete recovery in viability compared to dose-matched cells plated on tissue-culture plastic. Cells on the softest matrix (3 kPa) further displayed a 50% reduction in ROS production and preserved mitochondrial membrane potential. The actin cytoskeleton is mechanosensitive and closely related to ROS production. SH-SY5Y cells exposed to a 100 µg/mL dose of 50 nm silica particles displayed distinct cytoskeletal aberrations and a 70% increase in cell stiffness. Overall, this study establishes that the mechanical environment can significantly impact silica nanoparticle toxicity in SH-SY5Y cells. The mechanobiochemical mechanisms behind this regulation, which are initiated at the cell-matrix interface to adjust cytoskeletal structure and intracellular tension, demand specific attention for a comprehensive understanding of nanotoxicity.


Asunto(s)
Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Neoplasias Encefálicas/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuroblastoma/metabolismo , Fenómenos Físicos , Especies Reactivas de Oxígeno/metabolismo
2.
ACS Chem Neurosci ; 11(6): 840-850, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32058688

RESUMEN

Aggregated amyloid beta (Aß) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aß can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aß toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aß(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aß promotes F-actin polymerization and cell stiffening, while mature Aß fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aß as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aß exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides , Línea Celular Tumoral , Neuroblastoma , Fragmentos de Péptidos , Humanos , Neuronas , Fenotipo
3.
ACS Chem Neurosci ; 10(3): 1284-1293, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30499651

RESUMEN

Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the extracellular deposition of dense amyloid beta plaques. Emerging evidence suggests that the production of these plaques is initiated by the intracellular uptake and lysosomal preconcentration of the amyloid-beta (Aß) peptide. All previous endocytosis studies assess Aß uptake with cells plated on traditional tissue culture plastic; however, brain tissue is distinctly soft with a low-kPa stiffness. Use of an ultrastiff plastic/glass substrate prompts a mechanosensitive response (increased cell spreading, cell stiffness, and membrane tension) that potentially distorts a cell's endocytic behavior from that observed in vivo or in a more physiologically relevant mechanical environment. Our studies demonstrate substrate stiffness significantly modifies the behavior of undifferentiated SH-SY5Y neuroblastoma, where cells plated on soft (∼1 kPa) substrates display a rounded morphology, decreased actin polymerization, reduced adhesion (decreased ß1 integrin expression), and reduced cell stiffness compared to cells plated on tissue culture plastic. Moreover, these neuroblastoma on softer substrates display a preferential increase in the uptake of the Aß(1-42) compared to Aß(1-40), while both isoforms display a clear stiffness-dependent increase of uptake relative to cells plated on plastic. Considering the brain is a soft tissue that continues to soften with age, this mechanosensitive endocytosis of Aß has significant implications for understanding age-related neurodegeneration and the mechanism behind Aß uptake and fibril production. Overall, identifying these physical factors that contribute to the pathology of AD may offer novel avenues of therapeutic intervention.


Asunto(s)
Actinas/metabolismo , Péptidos beta-Amiloides/metabolismo , Endocitosis/fisiología , Matriz Extracelular/metabolismo , Fragmentos de Péptidos/metabolismo , Resinas Acrílicas , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Colesterol/metabolismo , Elasticidad , Geles , Vidrio , Humanos
4.
ACS Appl Bio Mater ; 1(5): 1254-1265, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996229

RESUMEN

The mechanical properties of submicron particles offer a unique design space for advanced drug-delivery particle engineering. However, the recognition of this potential is limited by a poor consensus about both the specificity and sensitivity of mechanosensitive endocytosis over a broad particle stiffness range. In this report, our model series of polystyrene-co-poly(N-isopropylacrylamide) (pS-co-NIPAM) microgels have been prepared with a nominally constant monomer composition (50 mol % styrene and 50 mol % NIPAM) with varied bis-acrylamide cross-linking densities to introduce a tuned spectrum of particle mechanics without significant variation in particle size and surface charge. While previous mechanosensitive studies use particles with moduli ranging from 15 kPa to 20 MPa, the pS-co-NIPAM particles have Young's moduli (E) ranging from 300 to 700 MPa, which is drastically stiffer than these previous studies as well as pure pNIPAM. Despite this elevated stiffness, particle uptake in RAW264.7 murine macrophages displays a clear stiffness dependence, with a significant increase in particle uptake for our softest microgels after a 4 h incubation. Preferential uptake of the softest microgel, pS-co-NIPAM-1 (E = 310 kPa), was similarly observed with nonphagocytic HepG2 hepatoma cells; however, the uptake kinetics were distinct relative to that observed for RAW264.7 cells. Pharmacological inhibitors, used to probe for specific routes of particle internalization, identify actin- and microtubule-dependent pathways in RAW264.7 cells as sensitive particle mechanics. For our pS-co-NIPAM particles at nominally 300-400 nm in size, this microtubule-dependent pathway was interpreted as a phagocytic route. For our high-stiffness microgel series, this study provides evidence of cell-specific, mechanosensitive endocytosis in a distinctly new stiffness regime that will further broaden the functional landscape of mechanics as a design space for particle engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA