Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 324: 228-237, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32413454

RESUMEN

Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers (PLE-PEG) are here investigated as polymers for conjugation to therapeutic proteins such as granulocyte colony stimulating factor (G-CSF) and human growth hormone (hGH). PLE-PEG block copolymers are able to stabilize and protect proteins from degradation and to prolong their residence time in the blood stream, features that are made possible thanks to PEG's intrinsic properties and the simultaneous presence of the biodegradable anionic PLE moiety. When PLE-PEG copolymers are selectively tethered to the N-terminus of G-CSF and hGH, they yield homogeneous monoconjugates that preserve the protein's secondary structure. During the current study the pharmacokinetics of PLE10-PEG20k-G-CSF and PLE20-PEG20k-G-CSF derivatives and their ability to induce granulopoiesis were, respectively, assessed in Sprague-Dawley rats and in C57BL6 mice. Our results show that the bioavailability and bioactivity of the derivatives are comparable to or better than those of PEG20k-Nter-G-CSF (commercially known as Pegfilgrastim). The therapeutic effects of PLE10-PEG20k-hGH and PLE20-PEG20k-hGH derivatives tested in hypophysectomized rats demonstrate that the presence of a negatively charged PLE block enhances the biological properties of the conjugates additionally with respect to PEG20k-Nter-hGH.


Asunto(s)
Ácido Glutámico , Polietilenglicoles , Animales , Ratones , Ratones Endogámicos C57BL , Polímeros , Ratas , Ratas Sprague-Dawley
2.
Sci Rep ; 9(1): 300, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670733

RESUMEN

The mouse Major Urinary Proteins (MUPs) contain a conserved ß-barrel structure with a characteristic central hydrophobic pocket that binds a variety of volatile compounds. After release of urine, these molecules are slowly emitted in the environment where they play an important role in chemical communication. MUPs are highly polymorphic and conformationally stable. They may be of interest in the construction of biosensor arrays capable of detection of a broad range of analytes. In this work, 14 critical amino acids in the binding pocket involved in ligand interactions were identified in MUP20 using in silico techniques and 7 MUP20 mutants were synthesised and characterised to produce a set of proteins with diverse ligand binding profiles to structurally different ligands. A single amino acid substitution in the binding pocket can dramatically change the MUPs binding affinity and ligand specificity. These results have great potential for the design of new biosensor and gas-sensor recognition elements.


Asunto(s)
Sitios de Unión/genética , Mutación Puntual , Proteínas/genética , Aminoácidos , Animales , Péptidos y Proteínas de Señalización Intercelular , Ligandos , Ratones , Proteínas Mutantes/síntesis química , Proteínas Mutantes/genética , Unión Proteica/genética , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA