Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Genet Genomics ; 297(4): 1151-1167, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35704117

RESUMEN

Supernumerary B chromosomes (Bs) are dispensable genetic elements widespread in eukaryotes and are poorly understood mainly in relation to mechanisms of maintenance and transmission. The cichlid Astatotilapia latifasciata can harbor Bs in a range of 0 (named B -) and 1-2 (named B +). The B in A. latifasciata is rich in several classes of repetitive DNA sequences, contains protein coding genes, and affects hosts in diverse ways, including sex-biased effects. To advance in the knowledge about the mechanisms of maintenance and transmission of B chromosomes in A. latifasciata, here, we studied the meiotic behavior in males and transmission rates of A. latifasciata B chromosome. We also analyzed structurally and functionally the predicted B chromosome copies of the cell cycle genes separin-like, tubb1-like and kif11-like. We identified in the meiotic structure relative to the B chromosome the presence of proteins associated with Synaptonemal Complex organization (SMC3, SYCP1 and SYCP3) and found that the B performs self-pairing. These data suggest that isochromosome formation was a step during B chromosome evolution and this element is in a stage of diversification of the two arms keeping the self-pairing behavior to protect the A chromosome complement of negative effects of recombination. Moreover, we observed no occurrence of B-drive and confirmed the presence of cell cycle genes copies in the B chromosome and their transcription in encephalon, muscle and gonads, which can indicates beneficial effects to hosts and contribute to B maintenance.


Asunto(s)
Cíclidos , Animales , Cromosomas/genética , Cíclidos/genética , Masculino , Meiosis/genética , Secuencias Repetitivas de Ácidos Nucleicos
2.
PLoS One ; 16(5): e0251028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945571

RESUMEN

SPATS1 (spermatogenesis-associated, serine-rich 1) is an evolutionarily conserved, testis-specific protein that is differentially expressed during rat male meiotic prophase. Some reports have suggested a link between SPATS1 underexpression/mutation and human pathologies such as male infertility and testicular cancer. Given the absence of functional studies, we generated a Spats1 loss-of-function mouse model using CRISPR/Cas9 technology. The phenotypic analysis showed no overt phenotype in Spats1-/- mice, with both males and females being fertile. Flow cytometry and histological analyses did not show differences in the testicular content and histology between WT and knockout mice. Moreover, no significant differences in sperm concentration, motility, and morphology, were observed between WT and KO mice. These results were obtained both for young adults and for aged animals. Besides, although an involvement of SPATS1 in the Wnt signaling pathway has been suggested, we did not detect changes in the expression levels of typical Wnt pathway-target genes in mutant individuals. Thus, albeit Spats1 alteration might be a risk factor for male testicular health, we hereby show that this gene is not individually essential for male fertility and spermatogenesis in mouse.


Asunto(s)
Fertilidad/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espermatogénesis/fisiología , Secuencia de Aminoácidos , Animales , Femenino , Infertilidad Masculina/metabolismo , Masculino , Meiosis/fisiología , Ratones , Ratones Noqueados , Neoplasias de Células Germinales y Embrionarias/metabolismo , Serina/metabolismo , Recuento de Espermatozoides/métodos , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Neoplasias Testiculares/metabolismo , Testículo/metabolismo
3.
Front Cell Dev Biol ; 9: 626020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748111

RESUMEN

Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.

4.
Mol Hum Reprod ; 26(7): 485-497, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32402064

RESUMEN

More than 50% of cases of primary ovarian insufficiency (POI) and nonobstructive azoospermia in humans are classified as idiopathic infertility. Meiotic defects may relate to at least some of these cases. Mutations in genes coding for synaptonemal complex (SC) components have been identified in humans, and hypothesized to be causative for the observed infertile phenotype. Mutation SYCE1 c.721C>T (former c.613C>T)-a familial mutation reported in two sisters with primary amenorrhea-was the first such mutation found in an SC central element component-coding gene. Most fundamental mammalian oogenesis events occur during the embryonic phase, and eventual defects are identified many years later, thus leaving few possibilities to study the condition's etiology and pathogenesis. Aiming to validate an approach to circumvent this difficulty, we have used the CRISPR/Cas9 technology to generate a mouse model with an SYCE1 c.721C>T equivalent genome alteration. We hereby present the characterization of the homozygous mutant mice phenotype, compared to their wild type and heterozygous littermates. Our results strongly support a causative role of this mutation for the POI phenotype in human patients, and the mechanisms involved would relate to defects in homologous chromosome synapsis. No SYCE1 protein was detected in homozygous mutants and Syce1 transcript level was highly diminished, suggesting transcript degradation as the basis of the infertility mechanism. This is the first report on the generation of a humanized mouse model line for the study of an infertility-related human mutation in an SC component-coding gene, thus representing a proof of principle.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/genética , Mutación Puntual/genética , Insuficiencia Ovárica Primaria/genética , Animales , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Proteínas de Unión al ADN/genética , Femenino , Citometría de Flujo , Predisposición Genética a la Enfermedad/genética , Homocigoto , Humanos , Inmunohistoquímica , Meiosis/genética , Meiosis/fisiología , Ratones , Mutación/genética
5.
RNA Biol ; 17(3): 350-365, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31869276

RESUMEN

The discovery of a large number of long noncoding RNAs (lncRNAs), and the finding that they may play key roles in different biological processes, have started to provide a new perspective in the understanding of gene regulation. It has been shown that the testes express the highest amount of lncRNAs among different vertebrate tissues. However, although some studies have addressed the characterization of lncRNAs along spermatogenesis, an exhaustive analysis of the differential expression of lncRNAs at its different stages is still lacking. Here, we present the results for lncRNA transcriptome profiling along mouse spermatogenesis, employing highly pure flow sorted spermatogenic stage-specific cell populations, strand-specific RNAseq, and a combination of up-to-date bioinformatic pipelines for analysis. We found that the vast majority of testicular lncRNA genes are expressed at post-meiotic stages (i.e. spermiogenesis), which are characterized by extensive post-transcriptional regulation. LncRNAs at different spermatogenic stages shared common traits in terms of transcript length, exon number, and biotypes. Most lncRNAs were lincRNAs, followed by a high representation of antisense (AS) lncRNAs. Co-expression analyses showed a high correlation along the different spermatogenic stage transitions between the expression patterns of AS lncRNAs and their overlapping protein-coding genes, raising possible clues about lncRNA-related regulatory mechanisms. Interestingly, we observed the co-localization of an AS lncRNA and its host sense mRNA in the chromatoid body, a round spermatids-specific organelle that has been proposed as a reservoir of RNA-related regulatory machinery. An additional, intriguing observation is the almost complete lack of detectable expression for Y-linked testicular lncRNAs, despite that a high number of lncRNA genes are annotated for this chromosome.


Asunto(s)
ARN Largo no Codificante/genética , Espermatogénesis/fisiología , Animales , Regulación de la Expresión Génica , Masculino , Ratones , ARN sin Sentido , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Espermátides/citología , Espermátides/fisiología , Espermatogénesis/genética , Testículo/citología , Testículo/fisiología
6.
Chromosoma ; 128(3): 443-451, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30793238

RESUMEN

The synaptonemal complex is an evolutionarily conserved, supramolecular structure that holds the homologous chromosomes together during the pachytene stage of the first meiotic prophase. Among vertebrates, synaptonemal complex dynamics has been analyzed in mouse spermatocytes following the assembly of its components from leptotene to pachytene stages. With few exceptions, a detailed study of the disassembly of SCs and the behavior of SC components at recombination sites at the onset of diplotene has not been accomplished. Here, we describe for the first time the progressive disassembly of the SC in chicken oocytes during the initial steps of desynapsis using immunolocalization of specific SC proteins and super-resolution microscopy. We found that transverse filament protein SYCP1 and central element component SYCE3 remain associated with the lateral elements at the beginning of chromosomal axis separation. As the separation between lateral elements widens, these proteins eventually disappear, without any evidence of subsequent association. Our observations support the idea that post-translational modifications of the central region components have a role at the initial phases of the SC disassembly. At the crossover sites, signaled by persistent MLH1 foci, the central region proteins are no longer detected when the SYCP3-positive lateral elements are widely separated. These findings are indicative that SC disassembly follows a general pattern along the desynaptic bivalents. The present work shows that the use of avian oocytes at prophase I provides a valuable model to explore the time course and chromosomal localization of SC proteins and its relationship with local changes along meiotic bivalents.


Asunto(s)
Pollos/genética , Microscopía Confocal , Oocitos/metabolismo , Complejo Sinaptonémico/metabolismo , Animales , Biomarcadores , Segregación Cromosómica , Femenino , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Meiosis
7.
Cytogenet Genome Res ; 150(2): 77-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27997882

RESUMEN

Human infertility is often classified as idiopathic in both males and females. Meiotic errors may account for at least part of these cases. As the synaptonemal complex (SC, a meiosis-specific protein scaffold) is essential for successful meiosis progression, in this paper, we analyzed the mutations in genes coding for SC components described in infertile patients to assess to what extent alterations in the SC can be related to human infertility. So far, mutations in SYCP3 and SYCE1 genes have been reported. While most SYCP3 mutations are heterozygous mutations with dominant-negative effect on the region encoding the C-terminal coiled coil of the protein, SYCE1 mutations are homozygous, which is consistent with a recessive inheritance. Similarities and differences between males and females as well as between mice and humans have been found and are discussed herein. The results suggest that a low percentage of human infertility cases may be explained by mutations in genes coding for SC components. The characterization of these mutations, together with available information from the study of knockout mice, will enable a deeper understanding of the underlying molecular bases for some of the cases of idiopathic infertility.


Asunto(s)
Fertilidad/genética , Mutación , Complejo Sinaptonémico/genética , Animales , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Complejo Sinaptonémico/ultraestructura
8.
BMC Genomics ; 17: 294, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27094866

RESUMEN

BACKGROUND: Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. RESULTS: We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. CONCLUSIONS: This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals.


Asunto(s)
Fase Paquiteno/genética , Espermatogénesis/genética , Transcriptoma , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Profase Meiótica I/genética , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Espermatogonias/citología , Cromosoma X/genética
9.
Biochim Biophys Acta ; 1728(1-2): 34-43, 2005 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-15777640

RESUMEN

Using mRNA differential display and cDNA library screening approaches we have identified differential gene expression of pecanex 1--a mammalian homologue of pecanex gene from Drosophila--in the testes of the rat. Northern blot analyses showed that the transcript is only present in the germ line and not in the somatic cells of the testis, reaching its peak at the pachytene stage of the meiotic prophase. Moreover, nonradioactive in situ hybridization did not detect the expression of the gene in any cell type of the testis other than pachytene spermatocytes. Northern blot assays did not allow the detection of the transcript in nine other tissues. Remarkably, although pecanex exerts a neurogenic role in Drosophila, the transcript was not detectable by Northern blotting in the nervous tissue of adult rats, nor in the brain of neonate and embryonal stages. The protein product of the pecanex 1 gene was detected by immunoblotting in pachytene spermatocytes and round spermatids as well, but not in liver nor brain. From genomic analysis we conclude that, although only one pecanex gene exists in Drosophila, mammalian pecanex 1 belongs to a gene family with three related genes in different chromosomes. We speculate that pecanex 1 could play an important role in the testis, related to spermatogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Expresión Génica , Ratas/genética , Espermatogénesis/genética , Animales , Secuencia de Bases , Northern Blotting , Proteínas de Ciclo Celular/genética , Electroforesis en Gel de Poliacrilamida , Femenino , Biblioteca de Genes , Immunoblotting , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Ratas/metabolismo , Ratas Wistar , Alineación de Secuencia , Análisis de Secuencia de ADN , Testículo/metabolismo
10.
Parasitol. latinoam ; 57(1/2): 55-58, ene.-jun. 2002. ilus
Artículo en Español | LILACS | ID: lil-317517

RESUMEN

Mujer de 39 años procedente de la provincia de Talca (VII Región) que presentó un cuadro de dolor abdominal intenso que se interpretó como abdomen agudo por el cual se le hizo laparotomía exploradora que no fue concluyente. Después de diferentes procedimientos y exámenes se llegó al diagnóstico de fascioliasis aguda. Se trató con triclabendazol


Asunto(s)
Humanos , Adulto , Femenino , Fasciola hepatica , Fascioliasis , Antihelmínticos/farmacología , Fasciola hepatica , Fascioliasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA