Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Struct Dyn ; 7(5): 054303, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32984435

RESUMEN

Time-resolved optical pump/X-ray probe experiments are often used to study structural dynamics. To ensure high temporal resolution, it is necessary to monitor the timing between the X-ray pulses and the laser pulses. The transition from a crystalline solid material to a disordered state in a non-thermal melting process can be used as a reliable timing monitor. We have performed a study of the non-thermal melting of InSb in single-shot mode, where we varied the sample temperature in order to determine the conditions required for repetitive melting. We show how experimental conditions affect the feasibility of such a timing tool.

2.
Phys Rev Lett ; 124(10): 105701, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216426

RESUMEN

This study shows that initial atomic velocities as given by thermodynamics play an important role in the dynamics of phase transitions. We tracked the atomic motion during nonthermal laser-induced melting of InSb at different initial temperatures. The ultrafast atomic motion following bond breaking can in general be governed by two mechanisms: the random velocity of each atom at the time of bond breaking (inertial model), and the forces acting on the atoms after bond breaking. The melting dynamics was found to follow the inertial model over a wide temperature range.

3.
Struct Dyn ; 6(2): 024501, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30915389

RESUMEN

We have studied strain wave generation in graphite induced by an intense ultrashort laser pulse. The study was performed in the intensity regime above the ablation threshold of graphite. The aim was to maximize the strain and, thus, also the internal pressure (stress). Laser pulses with a 1 ps temporal duration melt the surface of graphite resulting in a molten material which initially exists at the solid density. As the molten material expands, a compressive strain wave starts propagating into the crystal below the molten layer. The strain pulse was studied with time-resolved X-ray diffraction. At a temporal delay of 100 ps after laser excitation, we observed >10% compressive strain, which corresponds to a pressure of 7.2 GPa. This strain could be reproduced by hydrodynamic simulations, which also provided a temperature map as a function of time and depth.

4.
Struct Dyn ; 4(5): 051102, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29085849

RESUMEN

We have studied an X-ray switch based on a gold coated indium antimonide crystal using time-resolved X-ray diffraction and demonstrated that the switch could reduce the pulse duration of a 100 ps X-ray pulse down to 20 ps with a peak reflectivity of 8%. We have used a dynamical diffraction code to predict the performance of the switch, which was then confirmed experimentally. The experiment was carried out at the FemtoMAX beamline at the short-pulse facility of the MAX IV laboratory. The performance and limitation of the switch are discussed in terms of acoustic transport properties between the two materials and the electron transport properties of gold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...