Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8051, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052872

RESUMEN

Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP. Following intratracheal aerosol delivery of Cy5-labeled peptide in rhesus macaques, we confirm delivery throughout the respiratory tract. Subsequently, we target CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieve editing efficiencies of up-to 5.3% in rhesus airway epithelia. Moreover, we document persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restores anion channel function in cultured human airway epithelia. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células Epiteliales , Animales , Humanos , Ratones , Macaca mulatta/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Ribonucleoproteínas/metabolismo , Péptidos/genética , Sistemas CRISPR-Cas
2.
Res Sq ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824928

RESUMEN

Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, to improve base editor RNP delivery, we optimized S10 to derive the S315 peptide. Following intratracheal aerosol of Cy5-labeled peptide cargo in rhesus macaques, we confirmed delivery throughout the respiratory tract. Subsequently, we targeted CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieved editing efficiencies of up to 5.3% in rhesus airway epithelia. Moreover, we documented persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restored anion channel function in cultured human airway epithelial cells. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.

3.
Sci Transl Med ; 13(581)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597264

RESUMEN

The accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle. Mitochondrial release in patients with SLE correlates with platelet degranulation. This process requires the stimulation of platelet FcγRIIA, a receptor for immune complexes. Because mice lack FcγRIIA and murine platelets are completely devoid of receptor capable of binding IgG-containing immune complexes, we used transgenic mice expressing FcγRIIA for our in vivo investigations. FcγRIIA expression in lupus-prone mice led to the recruitment of platelets in kidneys and to the release of mitochondria in vivo. Using a reporter mouse with red fluorescent protein targeted to the mitochondrion, we confirmed platelets as a source of extracellular mitochondria driven by FcγRIIA and its cosignaling by the fibrinogen receptor α2bß3 in vivo. These findings suggest that platelets might be a key source of mitochondrial antigens in SLE and might be a therapeutic target for treating SLE.


Asunto(s)
Plaquetas , Lupus Eritematoso Sistémico , Animales , Complejo Antígeno-Anticuerpo , Autoanticuerpos/metabolismo , Plaquetas/metabolismo , Humanos , Lupus Eritematoso Sistémico/metabolismo , Ratones , Mitocondrias , Receptores de IgG/metabolismo
4.
Front Immunol ; 10: 1026, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134086

RESUMEN

The mitochondrion supplies energy to the cell and regulates apoptosis. Unlike other mammalian organelles, mitochondria are formed by binary fission and cannot be directly produced by the cell. They contain numerous copies of a compact circular genome that encodes RNA molecules and proteins involved in mitochondrial oxidative phosphorylation. Whereas, mitochondrial DNA (mtDNA) activates the innate immune system if present in the cytosol or the extracellular milieu, it is also the target of circulating autoantibodies in systemic lupus erythematosus (SLE). However, it is not known whether mitochondrial RNA is also recognized by autoantibodies in SLE. In the present study, we evaluated the presence of autoantibodies targeting mitochondrial RNA (AmtRNA) in SLE. We quantified AmtRNA in an inducible model of murine SLE. The AmtRNA were also determined in SLE patients and healthy volunteers. AmtRNA titers were measured in both our induced model of murine SLE and in human SLE, and biostatistical analyses were performed to determine whether the presence and/or levels of AmtRNA were associated with clinical features expressed by SLE patients. Both IgG and IgM classes of AmtRNA were increased in SLE patients (n = 86) compared to healthy controls (n = 30) (p < 0.0001 and p = 0.0493, respectively). AmtRNA IgG levels correlated with anti-mtDNA-IgG titers (rs = 0.54, p < 0.0001) as well as with both IgG and IgM against ß-2-glycoprotein I (anti-ß2GPI; rs = 0.22, p = 0.05), and AmtRNA-IgG antibodies were present at higher levels when patients were positive for autoantibodies to double-stranded-genomic DNA (p < 0.0001). AmtRNA-IgG were able to specifically discriminate SLE patients from healthy controls, and were negatively associated with plaque formation (p = 0.04) and lupus nephritis (p = 0.03). Conversely, AmtRNA-IgM titers correlated with those of anti-ß2GPI-IgM (rs = 0.48, p < 0.0001). AmtRNA-IgM were higher when patients were positive for anticardiolipin antibodies (aCL-IgG: p = 0.01; aCL-IgM: p = 0.002), but AmtRNA-IgM were not associated with any of the clinical manifestations assessed. These findings identify mtRNA as a novel mitochondrial antigen target in SLE, and support the concept that mitochondria may provide an important source of circulating autoantigens in SLE.


Asunto(s)
Anticuerpos Antinucleares/inmunología , Autoanticuerpos/inmunología , ADN/inmunología , Lupus Eritematoso Sistémico/inmunología , ARN Mitocondrial/inmunología , Animales , Anticuerpos Anticardiolipina/sangre , Anticuerpos Anticardiolipina/inmunología , Anticuerpos Antinucleares/sangre , Autoanticuerpos/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/inmunología
5.
Sci Rep ; 9(1): 4530, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872710

RESUMEN

Mitochondria are organelles that govern energy supply and control cell death. Mitochondria also express bacterial features, such as the presence of inner membrane cardiolipin and a circular genome rich in hypomethylated CpG motifs. While mitochondrial extrusion by damaged organs or activated cells is thought to trigger innate immunity, it is unclear whether extracellular mitochondria also stimulate an adaptive immune response. We describe the development of novel assays to detect autoantibodies specific to two distinct components of the mitochondrion: the mitochondrial outer membrane and mitochondrial DNA. Antibodies to these two mitochondrial constituents were increased in both human and murine systemic lupus erythematosus (SLE), compared to controls, and were present at higher levels than in patients with antiphospholipid syndrome or primary biliary cirrhosis. In both bi- and multi-variate regression models, antibodies to mitochondrial DNA, but not whole mitochondria, were associated with increased anti-dsDNA antibodies and lupus nephritis. This study describes new and optimized methods for the assessment of anti-mitochondrial antibodies, and demonstrates their presence in both human and murine SLE. These findings suggest that different mitochondrial components are immunogenic in SLE, and support the concept that extracellular mitochondria may provide an important source of circulating autoantigens in SLE.


Asunto(s)
Autoanticuerpos/inmunología , Lupus Eritematoso Sistémico/inmunología , Mitocondrias/inmunología , Adulto , Anciano , Animales , Anticuerpos Antinucleares/sangre , Anticuerpos Antinucleares/inmunología , Autoanticuerpos/sangre , ADN Mitocondrial/inmunología , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Humanos , Lupus Eritematoso Sistémico/patología , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/inmunología , Oportunidad Relativa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...