Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(3): 2657-2665, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174429

RESUMEN

The supramolecular and mesoscopic architectures of lead-saponified linseed oil, used by painters since the Renaissance, have been characterised and linked to their rheological properties. The multi-scale organization of saponified oils has been demonstrated by SAXS (Small Angle X-ray Scattering), FF-TEM (Freeze-Fracture Transmission Electron Microscopy) and DIC (Differential Interference Contrast): some of the lead soaps (formed when the oil is heated in the presence of PbO) are organized into microscopic lamellar domains, distributed in a continuous matrix made up of unorganized species (partially saponified triglycerides, glycerol, remaining soaps, etc.). The concentration of lead soaps in the oil controls the average size and interaction between the lamellar domains. Linseed oil + PbO 17 mol% is viscous and consists of aggregates of lamellar domains isolated within the continuous unorganized matrix. In contrast, in linseed oil + PbO 50 mol%, the domains are homogeneously dispersed and form what can be described as a three-dimensional network, giving the system viscoelastic properties.

2.
Soft Matter ; 14(23): 4874-4880, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29850760

RESUMEN

Hierarchically organized polymer films are produced with a high level of order from the combination of block copolymer nanophase segregation, "breath figure" methodology and microwave irradiation. A block copolymer based on poly(methyl methacrylate) and poly(n-butylacrylate) featuring cylindrical nanopatterns is involved in the "breath figure" process to create a microporous honeycomb structure. These films are submitted to microwave annealing to enhance the degree of ordering of the nano-segregation without the destruction of the honeycomb microstructure, which is not possible by classical thermal or solvent annealing. Ellipsometry, optical and atomic force microscopy are used to study three key parameters; the substrate nature, the film thickness and the microwave irradiation power. The silicon wafer is the substrate of choice to efficiently act as the heating transfer element and 60 seconds at 10 watts are enough to nicely order the 1 µm thick copolymer films. These conditions are eventually applied on hierarchically organized polymer films to obtain a hexagonal array of 100 nm deep holes within a matrix of perpendicularly aligned nano-cylinders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...