Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 19(190): 20210951, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35582810

RESUMEN

Despite its importance in physiological processes and tissue engineering, the mechanism underlying cell contact guidance in an aligned fibrillar network has defied elucidation due to multiple interdependent signals that such a network presents to cells, namely, anisotropy of adhesion, porosity and mechanical behaviour. A microstructural-mechanical model of fibril networks was used to assess the relative magnitudes of these competing signals in networks of varied alignment strength based on idealized cylindrical pseudopods projected into the aligned and orthogonal directions and computing the anisotropy of metrics chosen for adhesion, porosity and mechanical behaviour: cylinder-fibre contact area for adhesion, persistence length of pores for porosity and total force to displace fibres from the cylindrical volume as well as network stiffness experienced upon cylinder retraction for mechanical behaviour. The signals related to mechanical anisotropy are substantially higher than adhesion and porosity anisotropy, especially at stronger network alignments, although their signal to noise (S/N) values are substantially lower. The former finding is consistent with a recent report that fibroblasts can sense fibril alignment via anisotropy of network mechanical resistance, and the model reveals this can be due to either mechanical resistance to pseudopod protrusion or retraction given their signal and S/N values are similar.


Asunto(s)
Comunicación Celular , Ingeniería de Tejidos , Anisotropía , Fibroblastos , Porosidad
2.
J Elast ; 145(1-2): 295-319, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36380845

RESUMEN

The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes precise definition of an accurate constitutive model difficult. One possible solution to this issue would be to define microstructural elements and perform fully coupled multiscale simulation. However, for complex geometries and loading scenarios, the computational costs of such simulations can be prohibitive. Ideally then, we should seek a method that contains microstructural detail, but leverages the speed of classical continuum-based finite-element (FE) modeling. In this work, we demonstrate the use of the Holzapfel-Gasser-Ogden (HGO) model [1, 2] to fit the behavior of microstructural network models. We show that Delaunay microstructural networks can be fit to the HGO strain energy function by calculating fiber network strain energy and average fiber stretch ratio. We then use the HGO constitutive model in a FE framework to improve the speed of our hybrid model, and demonstrate that this method, combined with a material property update scheme, can match a full multiscale simulation. This method gives us flexibility in defining complex FE simulations that would be impossible, or at least prohibitively time consuming, in multiscale simulation, while still accounting for microstructural heterogeneity.

3.
Biomech Model Mechanobiol ; 19(6): 2433-2442, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32462439

RESUMEN

The minor type IV collagen chain, which is a significant component of the glomerular basement membrane in healthy individuals, is known to assemble into large structures (supercoils) that may contribute to the mechanical stability of the collagen network and the glomerular basement membrane as a whole. The absence of the minor chain, as in Alport syndrome, leads to glomerular capillary demise and eventually to kidney failure. An important consideration in this problem is that the glomerular capillary wall must be strong enough to withstand the filtration pressure and porous enough to permit filtration at reasonable pressures. In this work, we propose a coupled feedback loop driven by filtration demand and tensional homeostasis of the podocytes forming the outer portion of the glomerular capillary wall. Briefly, the deposition of new collagen increases the stiffness of basement membrane, helping to stress shield the podocytes, but the new collagen also decreases the permeability of the basement membrane, requiring an increase in capillary transmural pressure drop to maintain filtration; the resulting increased pressure outweighs the increased glomerular basement membrane stiffness and puts a net greater stress demand on the podocytes. This idea is explored by developing a multiscale simulation of the capillary wall, in which a macroscopic (µm scale) continuum model is connected to a set of microscopic (nm scale) fiber network models representing the collagen network and the podocyte cytoskeleton. The model considers two cases: healthy remodeling, in which the presence of the minor chain allows the collagen volume fraction to be increased by thickening fibers, and Alport syndrome remodeling, in which the absence of the minor chain allows collagen volume fraction to be increased only by adding new fibers to the network. The permeability of the network is calculated based on previous models of flow through a fiber network, and it is updated for different fiber radii and volume fractions. The analysis shows that the minor chain allows a homeostatic balance to be achieved in terms of both filtration and cell tension. Absent the minor chain, there is a fundamental change in the relation between the two effects, and the system becomes unstable. This result suggests that mechanobiological or mechanoregulatory therapies may be possible for Alport syndrome and other minor chain collagen diseases of the kidney.


Asunto(s)
Colágeno Tipo IV/química , Tasa de Filtración Glomerular , Homeostasis , Riñón/fisiología , Capilares/metabolismo , Matriz Extracelular , Filtración , Membrana Basal Glomerular/metabolismo , Humanos , Riñón/metabolismo , Nefritis Hereditaria/metabolismo , Permeabilidad , Podocitos/citología , Presión , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...