Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 952: 175793, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39191329

RESUMEN

Anthropogenic pressures such as climate change and nutrient pollution are causing rapid changes in the marine environment. The relative influence of drivers of change on the plankton community remains uncertain, and this uncertainty is limiting our understanding of sustainable levels of human pressures. Plankton are the primary energy resource in marine food webs and respond rapidly to environmental changes, representing useful indicators of shifts in ecosystem structure and function. Categorising plankton into broad groups with similar characteristics, known as "lifeforms", can be useful for understanding ecological patterns related to environmental change and for assessing the state of pelagic habitats in accordance with the EU Marine Strategy Framework Directive and the OSPAR Commission, which mandates protection of the North-East Atlantic. We analysed 29 years of Continuous Plankton Recorder data (1993-2021) from the North-East Atlantic to examine how trends in plankton lifeform abundance changed in relation to one another and across gradients of environmental change associated with human pressures. Random forest models predicted between 57 % and 80 % of the variability in lifeform abundance, based on data not used to train the models. Observed variability was mainly explained by trends in other lifeforms, with mainly positively correlated trends, indicating bottom-up control and/or shared responses to environmental variability were prevalent. Longitude, bathymetry, mixed layer depth, the nitrogen-to­phosphorus ratio, and temperature were also significant predictors. However, contrasting influences of environmental drivers were detected. For example, small copepod abundance increased in warmer conditions whereas meroplankton, large copepods and fish larvae either decreased or were unchanged. Our findings highlight recent changes in stratification, reflected by variation in mixed layer depth, and imbalanced nutrient ratios are affecting multiple lifeforms, impacting the North-East Atlantic plankton community. To achieve environmental improvements in North-East Atlantic pelagic habitats, it is crucial that we continue to address climate change and reduce nutrient pollution.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Plancton , Océano Atlántico , Ecosistema , Cadena Alimentaria
2.
Sci Total Environ ; 898: 165505, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451457

RESUMEN

Plankton form the base of marine food webs, making them important indicators of ecosystem status. Changes in the abundance of plankton functional groups, or lifeforms, can affect higher trophic levels and can indicate important shifts in ecosystem functioning. Here, we extend this knowledge by combining data from Continuous Plankton Recorder and fixed-point stations to provide the most comprehensive analysis of plankton time-series for the North-East Atlantic and North-West European shelf to date. We analysed 24 phytoplankton and zooplankton datasets from 15 research institutions to map 60-year abundance trends for 8 planktonic lifeforms. Most lifeforms decreased in abundance (e.g. dinoflagellates: -5 %, holoplankton: -7 % decade-1), except for meroplankton, which increased 12 % decade-1, reflecting widespread changes in large-scale and localised processes. K-means clustering of assessment units according to abundance trends revealed largely opposing trend direction between shelf and oceanic regions for most lifeforms, with North Sea areas characterised by increasing coastal abundance, while abundance decreased in North-East Atlantic areas. Individual taxa comprising each phytoplankton lifeform exhibited similar abundance trends, whereas taxa grouped within zooplankton lifeforms were more variable. These regional contrasts are counterintuitive, since the North Sea which has undergone major warming, changes in nutrients, and past fisheries perturbation has changed far less, from phytoplankton to fish larvae, as compared to the more slowly warming North-East Atlantic with lower nutrient supply and fishing pressure. This more remote oceanic region has shown a major and worrying decline in the traditional food web. Although the causal mechanisms remain unclear, declining abundance of key planktonic lifeforms in the North-East Atlantic, including diatoms and copepods, are a cause of major concern for the future of food webs and should provide a red flag to politicians and policymakers about the prioritisation of future management and adaptation measures required to ensure future sustainable use of the marine ecosystem.


Asunto(s)
Ecosistema , Plancton , Animales , Mar del Norte , Cadena Alimentaria , Fitoplancton , Zooplancton , Dinámica Poblacional
3.
Glob Chang Biol ; 26(6): 3482-3497, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32237280

RESUMEN

Increasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels. Here, we visualize regional-scale multi-decadal trends in six key plankton lifeforms as well as their correlative relationships with sea surface temperature (SST). For the first time, we collate trends across multiple disparate surveys, comparing the spatially and temporally extensive Continuous Plankton Recorder (CPR) survey (offshore) with multiple long-term fixed station-based time-series (inshore) from around the UK coastline. These analyses of plankton lifeforms showed profound long-term changes, which were coherent across large spatial scales. For example, 'diatom' and 'meroplankton' lifeforms showed strong alignment between surveys and coherent regional-scale trends, with the 1998-2017 decadal average abundance of meroplankton being 2.3 times that of 1958-1967 for CPR samples in the North Sea. This major, shelf-wide increase in meroplankton correlated with increasing SSTs, and contrasted with a general decrease in holoplankton (dominated by small copepods), indicating a changing balance of benthic and pelagic fauna. Likewise, inshore-offshore gradients in dinoflagellate trends, with contemporary increases inshore contrasting with multi-decadal decreases offshore (approx. 75% lower decadal mean abundance), urgently require the identification of causal mechanisms. Our lifeform approach allows the collation of many different data types and time-series across the NW European shelf, providing a crucial evidence base for informing ecosystem-based management, and the development of regional adaptation plans.


Asunto(s)
Ecosistema , Plancton , Animales , Biodiversidad , Clima , Mar del Norte
4.
Psychiatry Res ; 284: 112672, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31780184

RESUMEN

The Schizophrenia International Research Society (SIRS) recently held its first North American congress, which took place in Orlando, Florida from 10-14 April 2019. The overall theme of this year's congress was United in Progress - with the aim of cultivating a collaborative effort towards advancing the field of schizophrenia research. Student travel awardees provided reports of the oral sessions and concurrent symposia that took place during the congress. A collection of these reports is summarized and presented below and highlights the main themes and topics that emerged during the congress. In summary, the congress covered a broad range of topics relevant to the field of psychiatry today.


Asunto(s)
Esquizofrenia , Congresos como Asunto , Florida , Humanos , Sociedades Médicas
6.
Mar Pollut Bull ; 55(1-6): 205-14, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17074371

RESUMEN

The Water Framework Directive (WFD) identifies marine angiosperms (seagrasses and saltmarshes) as one of the biological elements used to classify water body status. This paper concentrates on the saltmarsh classification tools currently under development in the UK and RoI by the Marine Plants Task Team (MPTT) of the UK Technical Advisory Group (UK TAG). Saltmarsh classification is presently focusing on habitat extent, zonation and species diversity in order to fulfil the requirements of the WFD normative definitions. One of the many issues is that the natural rates of erosion and/or accretion differ between locations - this spatial and temporal natural variation is difficult to quantify; the tools and reference conditions developed will need to take this into consideration. To accurately quantify the classification boundaries and natural variability has posed a number of challenges; possible solutions are identified in this paper. Novel future classifications may also include saltmarsh ecosystem functioning (e.g., as a marine fish nursery) which may be further developed in an integrated saltmarsh tool.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/normas , Poaceae/crecimiento & desarrollo , Humedales , Clasificación/métodos , Ecosistema , Cooperación Internacional/legislación & jurisprudencia , Modelos Biológicos , Estándares de Referencia , Reino Unido
7.
Mar Pollut Bull ; 55(1-6): 65-73, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17045302

RESUMEN

The EU Water Framework Directive recognises that ecological status is supported by the prevailing physico-chemical conditions in each water body. This paper describes an approach to providing guidance on setting thresholds for nutrients taking account of the biological response to nutrient enrichment evident in different types of water. Indices of pressure, state and impact are used to achieve a robust nutrient (nitrogen) threshold by considering each individual index relative to a defined standard, scale or threshold. These indices include winter nitrogen concentrations relative to a predetermined reference value; the potential of the waterbody to support phytoplankton growth (estimated as primary production); and detection of an undesirable disturbance (measured as dissolved oxygen). Proposed reference values are based on a combination of historical records, offshore (limited human influence) nutrient concentrations, literature values and modelled data. Statistical confidence is based on a number of attributes, including distance of confidence limits away from a reference threshold and how well the model is populated with real data. This evidence based approach ensures that nutrient thresholds are based on knowledge of real and measurable biological responses in transitional and coastal waters.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/normas , Nitrógeno/análisis , Agua de Mar/química , Contaminación Química del Agua/análisis , Clasificación/métodos , Cooperación Internacional/legislación & jurisprudencia , Modelos Teóricos , Oxígeno/análisis , Fitoplancton/crecimiento & desarrollo , Estándares de Referencia , Estaciones del Año
8.
Mar Pollut Bull ; 55(1-6): 91-103, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17064735

RESUMEN

This paper presents a description of three of the proposed phytoplankton indices under investigation as part of a classification framework for UK and ROI marine waters. The three indices proposed for the classification process are (i) phytoplankton biomass measured as chlorophyll, (ii) the frequency of elevated phytoplankton counts measuring individual species and total cell counts and (iii) Seasonal progression of phytoplankton functional groups through the year. Phytoplankton biomass is calculated by a 90th percentile measurement of chlorophyll over the growing season (April to September) compared to a predetermined reference value. Calculation of functional groups and cell counts are taken as proportional counts derived from the presence of the indicator species or group as compared to the total phytoplankton count. Initial boundary conditions for the assessment of high/good status were tested for each index. Chlorophyll reference conditions were taken from thresholds developed for previous EU directives with the setting of offshore concentrations as a reference condition. Thresholds for elevated counts of phytoplankton taxa were taken from previous EU assessments describing counts that could be impact negatively on the environment. Reference seasonal growth curves are established using phytoplankton counts from "high status" waterbodies. To test the preliminary boundaries for each index, a risk assessment integrating nutrient enrichment and susceptibility for coastal and transitional waters was carried out to identify WFD waterbodies in England and Wales at different levels of risk. Waterbodies assessed as having low or medium risk from nutrient enrichment were identified as type 1 and type 2 waterbodies, and waterbodies assessed as high risk were identified as type 3 waterbodies. Phytoplankton data was extracted from the risk assigned waterbodies and applied to each phytoplankton index to test the robustness of the preliminary classification ranges for each phytoplankton index.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/normas , Fitoplancton/química , Clorofila/análisis , Clasificación/métodos , Monitoreo del Ambiente/métodos , Cooperación Internacional/legislación & jurisprudencia , Irlanda , Océanos y Mares , Fitoplancton/fisiología , Densidad de Población , Estándares de Referencia , Medición de Riesgo , Estaciones del Año , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA