RESUMEN
Genomic selection and doubled haploids hold significant potential to enhance genetic gains and shorten breeding cycles across various crops. Here, we utilized stochastic simulations to investigate the best strategies for optimize a sweet corn breeding program. We assessed the effects of incorporating varying proportions of old and new parents into the crossing block (3:1, 1:1, 1:3, and 0:1 ratio, representing different degrees of parental substitution), as well as the implementation of genomic selection in two distinct pipelines: one calibrated using the phenotypes of testcross parents (GSTC scenario) and another using F1 individuals (GSF1). Additionally, we examined scenarios with doubled haploids, both with (DH) and without (DHGS) genomic selection. Across 20 years of simulated breeding, we evaluated scenarios considering traits with varying heritabilities, the presence or absence of genotype-by-environment effects, and two program sizes (50 vs 200 crosses per generation). We also assessed parameters such as parental genetic mean, average genetic variance, hybrid mean, and implementation costs for each scenario. Results indicated that within a conventional selection program, a 1:3 parental substitution ratio (replacing 75% of parents each generation with new lines) yielded the highest performance. Furthermore, the GSTC model outperformed the GSF1 model in enhancing genetic gain. The DHGS model emerged as the most effective, reducing cycle time from 5 to 4 years and enhancing hybrid gains despite increased costs. In conclusion, our findings strongly advocate for the integration of genomic selection and doubled haploids into sweet corn breeding programs, offering accelerated genetic gains and efficiency improvements.
Asunto(s)
Simulación por Computador , Haploidia , Modelos Genéticos , Fitomejoramiento , Selección Genética , Zea mays , Zea mays/genética , Fitomejoramiento/métodos , Genómica/métodos , Fenotipo , Genoma de Planta , GenotipoRESUMEN
Probabilistic models enhance breeding, especially for the Tahiti acid lime, a fruit essential to fresh markets and industry. These models identify superior and persistent individuals using probability theory, providing a measure of uncertainty that can aid the recommendation. The objective of our study was to evaluate the use of a Bayesian probabilistic model for the recommendation of superior and persistent genotypes of Tahiti acid lime evaluated in 12 harvests. Leveraging the Monte Carlo Hamiltonian sampling algorithm, we calculated the probability of superior performance (superior genotypic value), and the probability of superior stability (reduced variance of the genotype-by-harvests interaction) of each genotype. The probability of superior stability was compared to a measure of persistence estimated from genotypic values predicted using a frequentist model. Our results demonstrated the applicability and advantages of the Bayesian probabilistic model, yielding similar parameters to those of the frequentist model, while providing further information about the probabilities associated with genotype performance and stability. Genotypes G15, G4, G18, and G11 emerged as the most superior in performance, whereas G24, G7, G13, and G3 were identified as the most stable. This study highlights the usefulness of Bayesian probabilistic models in the fruit trees cultivars recommendation.
Asunto(s)
Compuestos de Calcio , Óxidos , Fitomejoramiento , Humanos , Teorema de Bayes , Probabilidad , PolinesiaRESUMEN
OBJECTIVES: to assess the predictive performance of different artificial intelligence algorithms to estimate bed bath execution time in critically ill patients. METHODS: a methodological study, which used artificial intelligence algorithms to predict bed bath time in critically ill patients. The results of multiple regression models, multilayer perceptron neural networks and radial basis function, decision tree and random forest were analyzed. RESULTS: among the models assessed, the neural network model with a radial basis function, containing 13 neurons in the hidden layer, presented the best predictive performance to estimate the bed bath execution time. In data validation, the squared correlation between the predicted values and the original values was 62.3%. CONCLUSIONS: the neural network model with radial basis function showed better predictive performance to estimate bed bath execution time in critically ill patients.
Asunto(s)
Inteligencia Artificial , Enfermedad Crítica , Humanos , Redes Neurales de la Computación , Algoritmos , Unidades de Cuidados IntensivosRESUMEN
ABSTRACT Objectives: to assess the predictive performance of different artificial intelligence algorithms to estimate bed bath execution time in critically ill patients. Methods: a methodological study, which used artificial intelligence algorithms to predict bed bath time in critically ill patients. The results of multiple regression models, multilayer perceptron neural networks and radial basis function, decision tree and random forest were analyzed. Results: among the models assessed, the neural network model with a radial basis function, containing 13 neurons in the hidden layer, presented the best predictive performance to estimate the bed bath execution time. In data validation, the squared correlation between the predicted values and the original values was 62.3%. Conclusions: the neural network model with radial basis function showed better predictive performance to estimate bed bath execution time in critically ill patients.
RESUMEN Objetivos: evaluar el rendimiento predictivo de diferentes algoritmos de inteligencia artificial para estimar el tiempo de ejecución del baño en cama en pacientes críticos. Métodos: estudio metodológico, que utilizó algoritmos de inteligencia artificial para predecir el tiempo de baño en cama en pacientes críticos. Se analizaron los resultados de modelos de regresión múltiple, redes neuronales perceptrón multicapa y función de base radial, árbol de decisión y random forest. Resultados: entre los modelos evaluados, el modelo de red neuronal con función de base radial, que contiene 13 neuronas en la capa oculta, presentó el mejor desempeño predictivo para estimar el tiempo de ejecución del baño en cama. En la validación de datos, la correlación al cuadrado entre los valores predichos y los valores originales fue del 62,3%. Conclusiones: el modelo de red neuronal con función de base radial mostró mejor rendimiento predictivo para estimar el tiempo de ejecución del baño en cama en pacientes críticos.
RESUMO Objetivos: avaliar a performance preditiva de diferentes algoritmos de inteligência artificial para estimar o tempo de execução do banho no leito em pacientes críticos. Métodos: estudo metodológico, que utilizou algoritmos de inteligência artificial para predizer o tempo de banho no leito em pacientes críticos. Foram analisados os resultados dos modelos de regressão múltipla, redes neurais perceptron multicamadas e função de base radial, árvore de decisão e random forest. Resultados: entre os modelos avaliados, o modelo de rede neural com função de base radial, contendo 13 neurônios na camada oculta, apresentou melhor performance preditiva para estimar o tempo de execução do banho no leito. Na validação dos dados, o quadrado da correlação entre os valores preditos e os valores originais foi de 62,3%. Conclusões: o modelo de rede neural com função de base radial apresentou melhor performance preditiva para estimar o tempo de execução do banho no leito em pacientes críticos.
RESUMEN
Obtaining soybean genotypes that combine better nutrient uptake, higher oil and protein levels in the grains, and high grain yield is one of the major challenges for current breeding programs. To avoid the development of unpromising populations, selecting parents for crossbreeding is a crucial step in the breeding pipeline. Therefore, our objective was to estimate the combining ability of soybean cultivars based on the F2 generation, aiming to identify superior segregating parents and populations for agronomic, nutritional and industrial traits. Field experiments were carried out in two locations in the 2020/2021 crop season. Leaf contents of the following nutrients were evaluated: phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, manganese, and zinc. Agronomic traits assessed were days to maturity (DM) and grain yield (GY), while the industrial traits protein, oil, fiber and ash contents were also measured in the populations studied. There was a significant genotype × environment (G × A) interaction for all nutritional traits, except for P content, DM and all industrial traits. The parent G3 and the segregating populations P20 and P27 can be used aiming to obtain higher nutritional efficiency in new soybean cultivars. The segregating populations P11 and P26 show higher potential for selecting soybean genotypes that combine earliness and higher grain yield. The parent G5 and segregant population P6 are promising for selection seeking improvement of industrial traits in soybean.
Asunto(s)
Glycine max , Fitomejoramiento , Glycine max/genética , Fenotipo , Genotipo , Agricultura , Grano Comestible/genéticaRESUMEN
Although the fruit yield has a core importance in Tahiti acid lime breeding programs, other traits stand out among the quality fruit and vegetative traits as ones that still need to be improved in selection of superior genotypes. Appling efficient tools aiming selection, such as the Bayesian inference, becomes an alternative in perennial crops. This study applied Bayesian inference in the genetic evaluation of Tahiti acid lime genotypes and estimated the interrelation between vegetative, productive and fruit quality traits. Twenty-four acid lime genotypes were evaluated for number of fruits, fruit yield, canopy volume, stem diameter, soluble solids content, shell thickness, and juice yield traits. The genotypic values were estimated through Bayesian inference and models with different residual structure were tested via deviance information criterion. Pearson's correlation and the path analysis were estimated, removing the multicollinearity effect. The Bayesian inference estimates genotypic values with high selective accuracy. The correlations obtained between traits from different groups can be useful in selection strategies for improvement of Tahiti acid lime. The Bayesian inference demonstrated to be an important tool and should be considered in perennial breeding programs.
Embora a produtividade seja uma característica fundamental em programas de melhoramento da lima ácida Tahiti, outras características se destacam por proporcionar uma seleção mais eficiente ou mesmo influenciar na expressão de atributos produtivos. A aplicação de inferência Bayesiana, pode tornar o processo de identificação de indivíduos superiores e o estudo das correlações entre as características ainda mais acurado. Objetivou-se, por meio deste estudo, estimar valores genéticos em genótipos de lima ácida Tahiti através de inferência Bayesiana e estimar coeficientes de correlação e de trilha entre características vegetativas, produtivas e de qualidade de frutos. Vinte e quatro genótipos de lima ácida foram avaliados durante dois anos para peso e número de frutos, volume de copa, diâmetro de caule, teor de sólidos solúveis dos frutos, espessura de casca e rendimento de suco. Os valores genéticos foram estimados por meio de inferência Bayesiana e modelos com diferentes estruturas residuais foram testados via critério de informação de deviance. Coeficiente de correlação de Pearson e de análise de trilha foram determinados, removendo o efeito de multicolinearidade. A estimação de valores genéticos via inferência Bayesiana apresentou alta acurácia seletiva. As correlações obtidas entre caracteres de diferentes grupos podem ser úteis em estratégias de seleção para melhoramento da lima ácida Tahiti. A inferência Bayesiana demonstrou ser uma ferramenta importante e deve ser considerada em programas de melhoramento de culturas perenes.
Asunto(s)
Teorema de Bayes , Citrus/crecimiento & desarrollo , Citrus/genética , Cadenas de MarkovRESUMEN
Understanding the genetic diversity and overcoming genotype-by-environment interaction issues is an essential step in breeding programs that aims to improve the performance of desirable traits. This study estimated genetic diversity and applied genotype + genotype-by-environment (GGE) biplot analyses in cotton genotypes. Twelve genotypes were evaluated for fiber yield, fiber length, fiber strength, and micronaire. Estimation of variance components and genetic parameters was made through restricted maximum likelihood and the prediction of genotypic values was made through best linear unbiased prediction. The modified Tocher and principal component analysis (PCA) methods, were used to quantify genetic diversity among genotypes. GGE biplot was performed to find the best genotypes regarding adaptability and stability. The Tocher technique and PCA allowed for the formation of clusters of similar genotypes based on a multivariate framework. The GGE biplot indicated that the genotypes IMACV 690 and IMA08 WS were highly adaptable and stable for the main traits in cotton. The cross between the genotype IMACV 690 and IMA08 WS is the most recommended to increase the performance of the main traits in cotton crops.
Compreender a diversidade genética e contornar os problemas causados pela interação genótipos por ambientes é uma etapa importante em programas de melhoramento. Este estudo teve como objetivo estimar a diversidade genética e aplicar a metodologia de biplot genótipo + genótipo por ambiente (GGE biplot) em doze genótipos de algodão avaliados quanto ao rendimento da fibra, comprimento da fibra, resistência da fibra e micronaire. A estimativa dos componentes de variância e dos parâmetros genéticos foi feita através do método da máxima verossimilhança restrita e a predição dos valores genotípicos por meio da melhor predição linear não enviesada. Os métodos de Tocher modificado e análise de componentes principais (PCA) foram utilizados para quantificar a diversidade genética entre os genótipos. O método GGE biplot foi conduzido para encontrar os melhores genótipos em relação à adaptabilidade e estabilidade. As técnicas de Tocher e PCA permitiram a formação de clusters de genótipos semelhantes com base em uma estrutura multivariada. O GGE biplot indicou que os genótipos IMACV 690 e IMA08 WS foram altamente adaptáveis e estáveis para as principais características do algodão. O cruzamento dentre os genótipos IMACV 690 e IMA08 WS é o mais recomendado para aumentar o desempenho das principais características na cultura do algodão.
Asunto(s)
Gossypium/genética , Fibra de Algodón/análisis , Interacción Gen-Ambiente , Genotipo , Fitomejoramiento/métodosRESUMEN
Spatial trends represent an obstacle to genetic evaluation in maize breeding. Spatial analyses can correct spatial trends, which allow for an increase in selective accuracy. The objective of this study was to compare the spatial (SPA) and non-spatial (NSPA) models in diallel multi-environment trial analyses in maize breeding. The trials consisted of 78 inter-populational maize hybrids, tested in four environments (E1, E2, E3, and E4), with three replications, under a randomized complete block design. The SPA models accounted for autocorrelation among rows and columns by the inclusion of first-order autoregressive matrices (AR1 â AR1). Then, the rows and columns factors were included in the fixed and random parts of the model. Based on the Bayesian information criteria, the SPA models were used to analyze trials E3 and E4, while the NSPA model was used for analyzing trials E1 and E2. In the joint analysis, the compound symmetry structure for the genotypic effects presented the best fit. The likelihood ratio test showed that some effects changed regarding significance when the SPA and NSPA models were used. In addition, the heritability, selective accuracy, and selection gain were higher when the SPA models were used. This indicates the power of the SPA model in dealing with spatial trends. The SPA model exhibits higher reliability values and is recommended to be incorporated in the standard procedure of genetic evaluation in maize breeding. The analyses bring the parents 2, 10 and 12, as potential parents in this microregion.
Asunto(s)
Zea mays , FitomejoramientoRESUMEN
Genome-wide selection (GWS) has been becoming an essential tool in the genetic breeding of long-life species, as it increases the gain per time unit. This study had a hypothesis that GWS is a tool that can decrease the breeding cycle in Jatropha. Our objective was to compare GWS with phenotypic selection in terms of accuracy and efficiency over three harvests. Models were developed throughout the harvests to evaluate their applicability in predicting genetic values in later harvests. For this purpose, 386 individuals of the breeding population obtained from crossings between 42 parents were evaluated. The population was evaluated in random block design, with six replicates over three harvests. The genetic effects of markers were predicted in the population using 811 SNP's markers with call rate = 95% and minor allele frequency (MAF) > 4%. GWS enables gains of 108 to 346% over the phenotypic selection, with a 50% reduction in the selection cycle. This technique has potential for the Jatropha breeding since it allows the accurate obtaining of GEBV and higher efficiency compared to the phenotypic selection by reducing the time necessary to complete the selection cycle. In order to apply GWS in the first harvests, a large number of individuals in the breeding population are needed. In the case of few individuals in the population, it is recommended to perform a larger number of harvests.
Asunto(s)
Producción de Cultivos , Productos Agrícolas , Jatropha , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Selección Genética , Alelos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Frecuencia de los Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Jatropha/genética , Jatropha/crecimiento & desarrollo , FenotipoRESUMEN
Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.
Asunto(s)
Biocombustibles/provisión & distribución , Jatropha/crecimiento & desarrollo , Fitomejoramiento/métodos , Algoritmos , Teorema de Bayes , Genotipo , Jatropha/genética , Cadenas de Markov , Modelos Genéticos , Modelos Teóricos , Método de Montecarlo , FenotipoRESUMEN
This study assessed the efficiency of Genomic selection (GS) or genome-wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.
Asunto(s)
Simulación por Computador , Genoma de Planta , Modelos Genéticos , Plantas/genética , Selección Genética , Marcadores Genéticos , Genotipo , Fitomejoramiento , Carácter Cuantitativo HeredableRESUMEN
ABSTRACT: In multi-environment trials (MET), large networks are assessed for results improvement. However, genotype by environment interaction plays an important role in the selection of the most adaptable and stable genotypes in MET framework. In this study, we tested different residual variances and measure the selection gain of cotton genotypes accounting for adaptability and stability, simultaneously. Twelve genotypes of cotton were bred in 10 environments, and fiber length (FL), fiber strength (FS), micronaire (MIC), and fiber yield (FY) were determined. Model selection for different residual variance structures (homogeneous and heterogeneous) was tested using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The variance components were estimated through restricted maximum likelihood and genotypic values were predicted through best linear unbiased prediction. The harmonic mean of relative performance of genetic values (HMRPGV) were applied for simultaneous selection for adaptability, stability, and yield. According to BIC heterogeneous residual variance was the best model fit for FY, whereas homogeneous residual variance was the best model fit for FL, FS, and MIC traits. The selective accuracy was high, indicating reliability of the prediction. The HMRPGV was capable to select for stability, adaptability and yield simultaneously, with remarkable selection gain for each trait.
RESUMO: Em ensaios multi-ambientes, grandes redes experimentais são utilizadas para a avaliação de genótipos, tentando contornar o efeito que a interação genótipo por ambiente desempenha na seleção genotípica. Neste estudo, objetivamos testar diferentes estruturas de variância residual e medir o ganho de seleção de genótipos de algodão, baseados em produtividade, adaptabilidade e estabilidade, simultaneamente. Doze genótipos de algodão foram plantados em 10 ambientes, sendo determinados o comprimento da fibra (CF), a resistência da fibra (RF), a micronaire (MIC) e produtividade de fibras (PF). A seleção do modelo para diferentes estruturas de variância residual (homogênea e heterogênea) foi testada usando o Critério de Informação de Akaike (AIC) e o Critério de Informação Bayesiano (BIC). Os componentes de variância foram estimados através de máxima verossimilhança restrita e os valores genotípicos foram preditos através da melhor predição linear não viesada. A média harmônica do desempenho relativo dos valores genéticos (HMRPGV) foram aplicadas para seleção simultânea para adaptabilidade, estabilidade e produtividade. De acordo com o BIC, a estrutura residual heterogênea apresentou o melhor ajuste para a característica PF, enquanto a estrutura residual homogênea apresentou o melhor ajuste para as características CF, RF e MIC. A acurácia seletiva foi alta, indicando confiabilidade da predição. O método HMRPGV foi capaz de selecionar para estabilidade, adaptabilidade e produtividade, simultaneamente, com notável ganho de seleção para cada característica.
RESUMEN
In multi-environment trials (MET), large networks are assessed for results improvement. However, genotype by environment interaction plays an important role in the selection of the most adaptable and stable genotypes in MET framework. In this study, we tested different residual variances and measure the selection gain of cotton genotypes accounting for adaptability and stability, simultaneously. Twelve genotypes of cotton were bred in 10 environments, and fiber length (FL), fiber strength (FS), micronaire (MIC), and fiber yield (FY) were determined. Model selection for different residual variance structures (homogeneous and heterogeneous) was tested using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The variance components were estimated through restricted maximum likelihood and genotypic values were predicted through best linear unbiased prediction. The harmonic mean of relative performance of genetic values (HMRPGV) were applied for simultaneous selection for adaptability, stability, and yield. According to BIC heterogeneous residual variance was the best model fit for FY, whereas homogeneous residual variance was the best model fit for FL, FS, and MIC traits. The selective accuracy was high, indicating reliability of the prediction. The HMRPGV was capable to select for stability, adaptability and yield simultaneously, with remarkable selection gain for each trait.(AU)
Em ensaios multi-ambientes, grandes redes experimentais são utilizadas para a avaliação de genótipos, tentando contornar o efeito que a interação genótipo por ambiente desempenha na seleção genotípica. Neste estudo, objetivamos testar diferentes estruturas de variância residual e medir o ganho de seleção de genótipos de algodão, baseados em produtividade, adaptabilidade e estabilidade, simultaneamente. Doze genótipos de algodão foram plantados em 10 ambientes, sendo determinados o comprimento da fibra (CF), a resistência da fibra (RF), a micronaire (MIC) e produtividade de fibras (PF). A seleção do modelo para diferentes estruturas de variância residual (homogênea e heterogênea) foi testada usando o Critério de Informação de Akaike (AIC) e o Critério de Informação Bayesiano (BIC). Os componentes de variância foram estimados através de máxima verossimilhança restrita e os valores genotípicos foram preditos através da melhor predição linear não viesada. A média harmônica do desempenho relativo dos valores genéticos (HMRPGV) foram aplicadas para seleção simultânea para adaptabilidade, estabilidade e produtividade. De acordo com o BIC, a estrutura residual heterogênea apresentou o melhor ajuste para a característica PF, enquanto a estrutura residual homogênea apresentou o melhor ajuste para as características CF, RF e MIC. A acurácia seletiva foi alta, indicando confiabilidade da predição. O método HMRPGV foi capaz de selecionar para estabilidade, adaptabilidade e produtividade, simultaneamente, com notável ganho de seleção para cada característica.(AU)
Asunto(s)
Gossypium/genética , Fibra de Algodón/análisis , Fibra de Algodón/clasificaciónRESUMEN
The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genetic selection. Thus, the present study aimed to estimate genetic parameters and to compare different selection strategies in the context of mixed models for soybean breeding. For this, data referring to the evaluation of 30 genotypes in 10 environments, regarding the grain yield trait, were used. The variance components were estimated through restricted maximum likelihood (REML) and genotypic values were predicted through best linear unbiased prediction (BLUP). Significant effects of genotypes and G×E interaction were detected by the likelihood ratio test (LRT). Low genotypic correlation was obtained across environments, indicating complex G×E interaction. The selective accuracy was very high, indicating high reliability. Our results showed that the most productive soybean genotypes have high adaptability and stability.(AU)
A interação genótipo × ambiente (G × E) desempenha um papel essencial na expressão fenotípica e pode provocar dificuldades na seleção genética. Assim, o presente estudo teve como objetivo estimar parâmetros genéticos e comparar diferentes estratégias de seleção no contexto de modelos mistos para melhoramento da soja. Para isso, foram utilizados dados referentes à avaliação de 30 genótipos em dez ambientes, referentes à característica produtividade de grãos. Os componentes de variância foram estimados pela máxima verossimilhança restrita (REML) e os valores genotípicos foram preditos pela melhor previsão imparcial linear (BLUP). Efeitos significativos dos genótipos e interação G × E foram detectados pelo teste da razão de verossimilhança (LRT). Correlação genotípica baixa foi obtida entre os ambientes indicando interação G × E do tipo complexa. A acurácia seletiva foi muito alta, indicando alta confiabilidade. Os resultados mostraram que os genótipos de soja mais produtivos apresentam alta adaptabilidade e estabilidade.(AU)
Asunto(s)
Glycine max/crecimiento & desarrollo , Glycine max/genética , Agroindustria/economíaRESUMEN
ABSTRACT: The genotype × environment (G×E) interaction plays an essential role in phenotypic expression and can lead to difficulties in genetic selection. Thus, the present study aimed to estimate genetic parameters and to compare different selection strategies in the context of mixed models for soybean breeding. For this, data referring to the evaluation of 30 genotypes in 10 environments, regarding the grain yield trait, were used. The variance components were estimated through restricted maximum likelihood (REML) and genotypic values were predicted through best linear unbiased prediction (BLUP). Significant effects of genotypes and G×E interaction were detected by the likelihood ratio test (LRT). Low genotypic correlation was obtained across environments, indicating complex G×E interaction. The selective accuracy was very high, indicating high reliability. Our results showed that the most productive soybean genotypes have high adaptability and stability.
RESUMO: A interação genótipo × ambiente (G × E) desempenha um papel essencial na expressão fenotípica e pode provocar dificuldades na seleção genética. Assim, o presente estudo teve como objetivo estimar parâmetros genéticos e comparar diferentes estratégias de seleção no contexto de modelos mistos para melhoramento da soja. Para isso, foram utilizados dados referentes à avaliação de 30 genótipos em dez ambientes, referentes à característica produtividade de grãos. Os componentes de variância foram estimados pela máxima verossimilhança restrita (REML) e os valores genotípicos foram preditos pela melhor previsão imparcial linear (BLUP). Efeitos significativos dos genótipos e interação G × E foram detectados pelo teste da razão de verossimilhança (LRT). Correlação genotípica baixa foi obtida entre os ambientes indicando interação G × E do tipo complexa. A acurácia seletiva foi muito alta, indicando alta confiabilidade. Os resultados mostraram que os genótipos de soja mais produtivos apresentam alta adaptabilidade e estabilidade.
RESUMEN
Random regression models (RRM) are a powerful tool to evaluate genotypic plasticity over time. However, to date, RRM remains unexplored for the analysis of repeated measures in Jatropha curcas breeding. Thus, the present work aimed to apply the random regression technique and study its possibilities for the analysis of repeated measures in Jatropha curcas breeding. To this end, the grain yield (GY) trait of 730 individuals of 73 half-sib families was evaluated over six years. Variance components were estimated by restricted maximum likelihood, genetic values were predicted by best linear unbiased prediction and RRM were fitted through Legendre polynomials. The best RRM was selected by Bayesian information criterion. According to the likelihood ratio test, there was genetic variability among the Jatropha curcas progenies; also, the plot and permanent environmental effects were statistically significant. The variance components and heritability estimates increased over time. Non-uniform trajectories were estimated for each progeny throughout the measures, and the area under the trajectories distinguished the progenies with higher performance. High accuracies were found for GY in all harvests, which indicates the high reliability of the results. Moderate to strong genetic correlation was observed across pairs of harvests. The genetic trajectories indicated the existence of genotype × measurement interaction, once the trajectories crossed, which implies a different ranking in each year. Our results suggest that RRM can be efficiently applied for genetic selection in Jatropha curcas breeding programs.
Asunto(s)
Jatropha/genética , Modelos Genéticos , Fitomejoramiento , Variación Biológica Poblacional , Variación GenéticaRESUMEN
Muitas árvores tropicais possuem dossel alto e folhas não facilmente acessíveis. O uso de tecido de um órgão mais acessível (câmbio) para extração de DNA pode ser uma alternativa para estudos moleculares. Nós adaptamos uma metodologia viável para extrair DNA genômico de tecido cambial coletado no campo para avaliação com PCR. Testamos três condições de armazenamento (dois tampões e sílica gel) e quatro períodos após a coleta. Utilizamos protocolos descritos anteriormente e os testamos em três espécies encontradas em florestas amazônicas e outros biomas: Anadenanthera peregrina var. peregrina, Cedrela fissilis e Ceiba speciosa. Nosso protocolo foi eficaz na obtenção de DNA adequado para sequenciamento e genotipagem de microssatélites. Recomendamos o uso de sílica para armazenamento de longo prazo e o tampão com ácido ascórbico para curto prazo. (AU)
Asunto(s)
Ácido Ascórbico , ADN , DitiotreitolRESUMEN
An efficient and informative statistical method to analyze genotype-by-environment interaction (GxE) is needed in maize breeding programs. Thus, the objective of this study was to compare the effectiveness of multiple-trait models (MTM), random regression models (RRM), and compound symmetry models (CSM) in the analysis of multi-environment trials (MET) in maize breeding. For this, a data set with 84 maize hybrids evaluated across four environments for the trait grain yield (GY) was used. Variance components were estimated by restricted maximum likelihood (REML), and genetic values were predicted by best linear unbiased prediction (BLUP). The best fit MTM, RRM, and CSM were identified by the Akaike information criterion (AIC), and the significance of the genetic effects were tested using the likelihood ratio test (LRT). Genetic gains were predicted considering four selection intensities (5, 10, 15, and 20 hybrids). The selected MTM, RRM, and CSM models fit heterogeneous residuals. Moreover, for RRM the genetic effects were modeled by Legendre polynomials of order two. Genetic variability between maize hybrids were assessed for GY. In general, estimates of broad-sense heritability, selective accuracy, and predicted selection gains were slightly higher when obtained using MTM and RRM. Thus, considering the criterion of parsimony and the possibility of predicting genetic values of hybrids for untested environments, RRM is a preferential approach for analyzing MET in maize breeding.
Asunto(s)
Interacción Gen-Ambiente , Modelos Genéticos , Herencia Multifactorial , Fitomejoramiento , Sitios de Carácter Cuantitativo , Zea mays/genética , Selección GenéticaRESUMEN
Many tropical trees have high canopies and their leaves are not accessible. Thus, the use of tissue from a more accessible organ (cambium) for DNA extraction may be an alternative for molecular studies. We adapted a feasible methodology for extracting genomic DNA from cambium tissue harvested in the field for the assessment with PCR. We tested three storage conditions (two buffers and a silica gel) and four periods of time after harvest. We used previously described protocols and tested them on three species that occur in Amazonian forests and other biomes: Anadenanthera peregrina var. peregrina, Cedrela fissilis, and Ceiba speciosa. Our protocol obtained suitable PCR-grade genomic DNA for DNA sequencing and microsatellite genotyping. We recommend the use of silica for long-term storage and the buffer with ascorbic acid for short-term storage.(AU)
Muitas árvores tropicais possuem dossel alto e folhas não facilmente acessíveis. O uso de tecido de um órgão mais acessível (câmbio) para extração de DNA pode ser uma alternativa para estudos moleculares. Nós adaptamos uma metodologia viável para extrair DNA genômico de tecido cambial coletado no campo para avaliação com PCR. Testamos três condições de armazenamento (dois tampões e sílica gel) e quatro períodos após a coleta. Utilizamos protocolos descritos anteriormente e os testamos em três espécies encontradas em florestas amazônicas e outros biomas: Anadenanthera peregrina var. peregrina, Cedrela fissilis e Ceiba speciosa. Nosso protocolo foi eficaz na obtenção de DNA adequado para sequenciamento e genotipagem de microssatélites. Recomendamos o uso de sílica para armazenamento de longo prazo e o tampão com ácido ascórbico para curto prazo.(AU)
Asunto(s)
Bosque Lluvioso , Ácido Ascórbico , ADN/aislamiento & purificaciónRESUMEN
Photosynthetic efficiency has become the target of several breeding programs since the positive correlation between photosynthetic rate and yield in soybean suggests that the improvement of photosynthetic efficiency may be a promising target for new yield gains. However, studies on combining ability of soybean genotypes for physiological traits are still scarce in the literature. The objective of this study was to estimate the combining ability of soybean genotypes based on F2 generation aiming to identify superior parents and segregating populations for physiological traits. Twenty-eight F2 populations resulting from partial diallel crossings between eleven lines were evaluated in two crop seasons for the physiological traits: photosynthesis, stomatal conductance, internal CO2 concentration, and transpiration. General combining ability (GCA) of the parents and specific combining ability (SCA) of the F2 populations were estimated. Our findings reveal the predominance of additive effects in controlling the traits. The genotype TMG 7062 IPRO is the most promising parent for programs aiming at photosynthetic efficiency. We have also identified other promising parents and proposed cross-breeding with higher potential for obtaining superior lines for photosynthetic efficiency.