Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Nutr Diabetes ; 14(1): 61, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143072

RESUMEN

BACKGROUND: With the fast pace of modern life, people have less time for meals, but few studies have examined the association between the habit of fast eating and metabolic diseases. OBJECTIVE: Combining the results of the current study and the prior ones, we aimed to investigate the possible relationship between fast eating and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: This is a sub-analysis of a multicenter cross-sectional study of 1965 participants investigated the association between fast eating and MASLD in Chinese. Fast eating was defined as meal time less than five minutes and participants were divided into three categories based on their self-reported frequency of fast eating: ≤1 time/month, ≤1 time/week and ≥2 times/week. We further conducted a literature search for available studies published before November, 2023 as well as a meta-analysis to investigate the association between fast eating and MASLD. RESULTS: The proportion of MASLD was 59.3%, 50.5%, and 46.2% in participants with fast eating ≥2 times/week, ≤1 time/week and ≤1 time/month, respectively (P for trend <0.001). The frequency of fast eating was independently associated with risk of MASLD after multiple adjustment for sex, age, demographics, smoking and drinking status, BMI and clinical metabolic parameters (OR, 1.29; 95%CI, 1.09-1.53). Participants who ate fast frequently (≥2 times/week) had 81% higher risk of MASLD (P = 0.011). A meta-analysis of five eligible studies confirmed that frequent fast eating was associated with increased risk of MASLD (pooled OR, 1.22; 95%CI, 1.07-1.39). CONCLUSIONS: Frequent fast eating was associated with an increased risk of MASLD.


Asunto(s)
Conducta Alimentaria , Humanos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Adulto , Factores de Riesgo , Factores de Tiempo , China/epidemiología , Enfermedades Metabólicas/epidemiología , Enfermedades Metabólicas/etiología , Comidas , Hígado Graso/epidemiología
2.
PLoS One ; 19(8): e0307394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39150954

RESUMEN

The basic tribological experiments have reported that nano-graphene lubricating oil has excellent anti-friction and anti-wear properties, which has been widely concerned. However, the real anti-friction effect of nano-graphene lubricating oil and its impact on engine power performance, economic performance and emission performance remain to be proved. This has seriously hindered the popularization and application of nano-graphene lubricating oil in the engine field. In this paper, nano-graphene powder was chemically grafted to prepare nano-graphene lubricating oil with high dispersion stability. The influence of nano-graphene on physicochemical properties of lubricating oil was studied, and the influence of nano-graphene on engine power performance, economic performance and emission performance was explored. The results show that after modification, the dispersion of nano-graphene in lubricating oil is improved. Compared with pure lubricating oil, the addition of nano-graphene makes the kinematic viscosity of lubricating oil slightly lower, and has little effect on the density, flash point, pour point and total acid value of lubricating oil. The reversed towing torque of nano-graphene lubricating oil is reduced by 1.82-5.53%, indicating that the friction loss decreases. The specific fuel consumption of the engine is reduced, which indicates that the fuel economic performance is improved. Engine HC+NOX, CH4, CO2 emissions do not change much, but particulate matter (PM) emissions increase by 8.85%. The quantity concentration of nuclear particles, accumulated particles and total particles of nano-graphene lubricating oil are significantly higher than that of pure lubricating oil. And the increase of the quantity concentration of accumulated particles is more obvious than that of nuclear particles, and the larger the load, the more obvious this phenomenon. In order to apply nano-graphene lubricating oil to the engine, it is also necessary to further study its impact on the post-processing system, adjust the control strategy of the post-processing system and then test and calibrate.


Asunto(s)
Grafito , Lubricantes , Viscosidad , Grafito/química , Lubricantes/química , Gasolina/análisis , Nanoestructuras/química , Aceites/química , Lubrificación , Emisiones de Vehículos/análisis
3.
Biol Trace Elem Res ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995434

RESUMEN

The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.

4.
Genes Dis ; 11(5): 101135, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38868575
5.
Sci Rep ; 14(1): 10797, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734735

RESUMEN

Nano-graphene lubricating oil with appropriate concentration shows excellent performance in reducing friction and wear under different working conditions of diesel engines, and has been widely concerned. Lubricating oil has a significant impact on particulate matter (PM) emissions. At present, there are few studies on the impact of nano-graphene lubricating oil on the physicochemical properties of PM. In order to comprehensively evaluate the impact of nano-graphene lubricating oil on diesel engines, this paper mainly focused on the effects of lubricating oil nano-graphene additives on the particle size distribution and physicochemical properties of PM. The results show that, compared with pure lubricating oil, the total number of nuclear PM and accumulated PM of nano-graphene lubricating oil is significantly increased. The fractal dimension of PM of nano-graphene lubricating oil increases and its structure becomes more compact. The average fringe separation distance of basic carbon particles decreases, the average fringe length increases. The degree of ordering and graphitization of basic carbon particles are higher. The fringe tortuosity of basic carbon particles decreases, and the fluctuation of carbon layer structure of basic carbon particles decreases. Aliphatic substances in PM are basically unchanged, aromatic components and oxygen functional groups increase. The initial PM oxidation temperature and burnout temperature increase, the maximum oxidation rate temperature and combustion characteristic index decrease, and the activation energy increases, making it more difficult to oxidize. This was mainly caused by the higher graphitization degree of PM of nano-graphene lubricating oil and the increased content of aromatic substances.

6.
Lipids Health Dis ; 23(1): 95, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566209

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Metabolismo de los Lípidos
7.
Front Endocrinol (Lausanne) ; 15: 1354511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590822

RESUMEN

Background: Diabetic peripheral neuropathy (DPN) contributes to disability and imposes heavy burdens, while subclinical DPN is lack of attention so far. We aimed to investigate the relationship between vitamin D and distinct subtypes of subclinical DPN in type 2 diabetes (T2DM) patients. Methods: This cross-sectional study included 3629 T2DM inpatients who undertook nerve conduction study to detect subclinical DPN in Zhongshan Hospital between March 2012 and December 2019. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D (25(OH)D) level < 50 nmol/L. Results: 1620 (44.6%) patients had subclinical DPN and they were further divided into subgroups: distal symmetric polyneuropathy (DSPN) (n=685), mononeuropathy (n=679) and radiculopathy (n=256). Compared with non-DPN, DPN group had significantly lower level of 25(OH)D (P < 0.05). In DPN subtypes, only DSPN patients had significantly lower levels of 25(OH)D (36.18 ± 19.47 vs. 41.03 ± 18.47 nmol/L, P < 0.001) and higher proportion of vitamin D deficiency (78.54% vs. 72.18%, P < 0.001) than non-DPN. Vitamin D deficiency was associated with the increased prevalence of subclinical DPN [odds ratio (OR) 1.276, 95% confidence interval (CI) 1.086-1.501, P = 0.003] and DSPN [OR 1. 646, 95% CI 1.31-2.078, P < 0.001], independent of sex, age, weight, blood pressure, glycosylated hemoglobin, T2DM duration, calcium, phosphorus, parathyroid hormone, lipids and renal function. The association between vitamin D deficiency and mononeuropathy or radiculopathy was not statistically significant. A negative linear association was observed between 25(OH)D and subclinical DSPN. Vitamin D deficiency maintained its significant association with subclinical DSPN in all age groups. Conclusions: Vitamin D deficiency was independently associated with subclinical DSPN, rather than other DPN subtypes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Mononeuropatías , Deficiencia de Vitamina D , Humanos , Factores de Riesgo , Neuropatías Diabéticas/epidemiología , Neuropatías Diabéticas/etiología , Estudios Transversales , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Mononeuropatías/complicaciones
8.
Sci Rep ; 14(1): 9167, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649770

RESUMEN

Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.


Asunto(s)
Proliferación Celular , Receptores ErbB , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Sinteninas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores ErbB/metabolismo , Animales , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Proliferación Celular/efectos de los fármacos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Sinteninas/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ratones Desnudos , Antineoplásicos/farmacología
9.
Front Endocrinol (Lausanne) ; 15: 1330139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375199

RESUMEN

Bariatric surgery (BS), recognized as the most effective intervention for morbid obesity and associated metabolic comorbidities, encompasses both weight loss-dependent and weight loss-independent mechanisms to exert its metabolic benefits. In this study, we employed plasma proteomics technology, a recently developed mass spectrometric approach, to quantitatively assess 632 circulating proteins in a longitudinal cohort of 9 individuals who underwent sleeve gastrectomy (SG). Through time series clustering and Gene Ontology (GO) enrichment analysis, we observed that complement activation, proteolysis, and negative regulation of triglyceride catabolic process were the primary biological processes enriched in down-regulated proteins. Conversely, up-regulated differentially expressed proteins (DEPs) were significantly associated with negative regulation of peptidase activity, fibrinolysis, keratinocyte migration, and acute-phase response. Notably, we identified seven proteins (ApoD, BCHE, CNDP1, AFM, ITIH3, SERPINF1, FCN3) that demonstrated significant alterations at 1-, 3-, and 6-month intervals post SG, compared to baseline. These proteins play essential roles in metabolism, immune and inflammatory responses, as well as oxidative stress. Consequently, they hold promising potential as therapeutic targets for combating obesity and its associated comorbidities.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Humanos , Proteoma , Gastrectomía , Pérdida de Peso/fisiología
10.
Front Oncol ; 14: 1309687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347836

RESUMEN

Transducin beta-like 1X-related protein 1 (TBL1XR1) was discovered two decades ago and was implicated as part of the nuclear transcription corepressor complex. Over the past 20 years, the emerging oncogenic function of TBL1XR1 in cancer development has been discovered. Recent studies have highlighted that the genetic aberrations of TBL1XR1 in cancers, especially in hematologic tumors, are closely associated with tumorigenesis. In solid tumors, TBL1XR1 is proposed to be a promising prognostic biomarker due to the correlation between abnormal expression and clinicopathological parameters. Post-transcriptional and post-translational modification are responsible for the expression and function of TBL1XR1 in cancer. TBL1XR1 exerts its functional role in various processes that involves cell cycle and apoptosis, cell proliferation, resistance to chemotherapy and radiotherapy, cell migration and invasion, stemness and angiogenesis. Multitude of cancer-related signaling cascades like Wnt-ß-catenin, PI3K/AKT, ERK, VEGF, NF-κB, STAT3 and gonadal hormone signaling pathways are tightly modulated by TBL1XR1. This review provided a comprehensive overview of TBL1XR1 in tumorigenesis, shedding new light on TBL1XR1 as a promising diagnostic biomarker and druggable target in cancer.

11.
Gene ; 906: 148263, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346455

RESUMEN

Flolistatin-related protein 1 (FSTL1), a secreted glycoprotein that is involved in many physiological functions, has attracted much interest and has been implicated in a wide range of diseases, including heart diseases and inflammatory diseases. In recent years, the involvement of FSTL1 in cancer progression has been implicated and researched. FSTL1 plays a contradictory role in cancer, depending on the cancer type as well as the contents of the tumor microenvironment. As reviewed here, the structure and distribution of FSTL1 are first introduced. Subsequently, the expression and clinical significance of FSTL1 in various types of cancer as a tumor enhancer or inhibitor are addressed. Furthermore, we discuss the functional role of FSTL1 in various processes that involve tumor cell proliferation, metastasis, immune responses, stemness, cell apoptosis, and resistance to chemotherapy. FSTL1 expression is tightly controlled in cancer, and a multitude of cancer-related signaling cascades like TGF-ß/BMP/Smad signaling, AKT, NF-κB, and Wnt-ß-catenin signaling pathways are modulated by FSTL1. Finally, FSTL1 as a therapeutic target using monoclonal antibodies is stated. Herein, we review recent findings showing the double-edged characteristics and mechanisms of FSTL1 in cancer and elaborate on the current understanding of therapeutic approaches targeting FSTL1.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Neoplasias , Humanos , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , FN-kappa B/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt , Animales
12.
Artículo en Inglés | MEDLINE | ID: mdl-38015259

RESUMEN

Myricetin is a natural flavonoid with anti-cancer and anti-inflammatory effects, but its mechanism for treating lung adenocarcinoma (LUAD) remains unclearly. Therefore, bioinformatics, in silico and in vitro experiments were employed to elucidate this issue in this study. The core targets of myricetin against LUAD were screened by PharmaMapper (v2017), Assistant for Clinical Bioinformatics, STRING (v11.5) and Cytoscape (v3.8.1). Using Kaplan-Meier Plotter (v2022.04.20), UALCAN (v2021.12.13) and GEPIA (v2.0) databases, the correlation between core genes and the prognosis of LUAD patients were analyzed, and the expression levels of core genes were verified. In silico studies were used to analyze the binding energies and sites of myricetin with core genes. The effects of myricetin on H1975 cells were explored through thiazolyl blue (MTT), cell migration, colony formation and western blot assays. A total of 72 potential targets of myricetin against LUAD were identified through bioinformatics. Among the four core targets obtained by multiple networks and in silico assays, the up-regulated MMP9 (HR = 1.14 (1-1.29), logrank P = 0.046) and down-regulated PIK3R1 (HR = 0.58 (0.51-0.66), logrank P < 1E-16) were positively correlated with poor survival outcomes in LUAD patients. In vitro experiments demonstrated that myricetin inhibited the proliferation and migration of H1975 cells, promoting their apoptosis. Myricetin inhibits the proliferation of H1975 cells and induces cell apoptosis through its influence on the expression levels of MMP1, MMP3, MMP9, and PIK3R1 and regulating the multiple pathways these genes participate in. Both MMP9 and PIK3R1 are potential biomarkers for LUAD.

13.
Clin Chim Acta ; 549: 117558, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37709114

RESUMEN

BACKGROUND: It remains unclear whether early sleeve gastrectomy (SG) improves postprandial very-low-density lipoprotein (VLDL) as well as chylomicron triglycerides (TGs) in a weight-independent manner in patients with or without type 2 diabetes (DM). Herein we investigated the early effects of SG on postprandial VLDL and chylomicron kinetics. METHODS: A liquid meal test was performed before and after 1 week of SG. The plasma was collected for postprandial triglyceride-rich lipoprotein kinetics analyses, including VLDLs and chylomicrons, isolated by high-speed ultracentrifugation. Lipidomics and metabolomics were used to profile lipid and metabolite compositions of plasma and postprandial chylomicrons. De novo fatty acid synthesis in intestinal epithelial cells treated with chylomicron metabolites was examined using RT-PCR, immunoblotting, and free fatty acid measurement. RESULTS: We found that patients with DM had markedly higher VLDL TGs than patients without DM, and such an increase was still retained after SG. In contrast, SG significantly decreased postprandial chylomicron TGs, but surprisingly, the degree of the reduction in patients with DM was less prominent than in patients without DM, confirmed by untargeted lipidomics analysis. Moreover, 5 unique metabolites potentially linked to de novo fatty acid synthesis from the pathway analysis were discovered by further metabolomic analysis of postprandial chylomicrons from patients with DM who underwent SG and verified by In vitro intestinal epithelial cell culture experiments. CONCLUSIONS: SG in 1 week did not impact postprandial VLDL but decreased chylomicron TGs. Patients with DM keep higher postprandial chylomicron TG concentrations than patients without it after SG, potentially through some unique metabolites that increase intestinal fatty acid synthesis. These results implicate the timing for SG to reach lower intestinal fatty acid synthesis and postprandial chylomicron TG production is prior to the diagnosis of DM to potentially reduce cardiovascular risks.

14.
Nat Commun ; 14(1): 6047, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770480

RESUMEN

Inter-organ crosstalk has gained increasing attention in recent times; however, the underlying mechanisms remain unclear. In this study, we elucidate an endocrine pathway that is regulated by skeletal muscle interferon regulatory factor (IRF) 4, which manipulates liver pathology. Skeletal muscle specific IRF4 knockout (F4MKO) mice exhibited ameliorated hepatic steatosis, inflammation, and fibrosis, without changes in body weight, when put on a nonalcoholic steatohepatitis (NASH) diet. Proteomics analysis results suggested that follistatin-like protein 1 (FSTL1) may constitute a link between muscles and the liver. Dual luciferase assays showed that IRF4 can transcriptionally regulate FSTL1. Further, inducing FSTL1 expression in the muscles of F4MKO mice is sufficient to restore liver pathology. In addition, co-culture experiments confirmed that FSTL1 plays a distinct role in various liver cell types via different receptors. Finally, we observed that the serum FSTL1 level is positively correlated with NASH progression in humans. These data indicate a signaling pathway involving IRF4-FSTL1-DIP2A/CD14, that links skeletal muscle cells to the liver in the pathogenesis of NASH.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Hígado/metabolismo , Transducción de Señal/fisiología , Músculo Esquelético/metabolismo , Cirrosis Hepática/patología , Ratones Endogámicos C57BL
15.
Environ Pollut ; 336: 122407, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597730

RESUMEN

Osteosclerosis and osteoporosis are the two main clinical manifestations of skeletal fluorosis. However, the reasons for the different clinical manifestations are unclear. In this study, we established the fluoride (F) -exposed ovariectomized (OVX) and non-OVX rat models to assess the potential role of ovarian function loss in osteosclerosis and osteoporosis. Micro-CT scanning showed that excessive F significantly induced a high bone mass in non-OVX rats. In contrast, a low bone mass manifestation was presented in OVX F-exposed rats. Also, a prominent feature of increasing trabecular connectivity, collagen area, growth plate thickness, and reduced trabecular space was found by histopathological morphology in non-OVX F-exposed rats; an opposite result was observed in OVX F-exposed. These alterations indicated ovariectomy was a vital factor leading to osteosclerosis or osteoporosis in skeletal fluorosis. Furthermore, levels of bone alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase (TRAP) increased, combined with the increasing osteoclasts number, showing a sign of high bone turnover in both OVX and non-OVX F-exposed rats. Mechanistically, oophorectomy considerably activated the RANKL/RANK/OPG signaling pathway. Meanwhile, it was discovered that upregulated NF-κB positively facilitated the accumulation of nuclear factor of activated T-cells 1 (NFATC1), significantly promoting osteoclast differentiation. To sum up, this study greatly enriched the causes of clinical skeletal fluorosis and provided a new perspective for studying the pathogenesis of skeletal fluorosis.

16.
Exp Clin Endocrinol Diabetes ; 131(11): 583-588, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37524110

RESUMEN

AIM: This study investigated the effects of insulin glargine and exenatide on the muscle mass of patients with newly diagnosed type 2 diabetes (T2DM) and nonalcoholic fatty liver disease (NAFLD). METHODS: We performed a post-hoc analysis of our previously study, a 24-week randomized controlled multicenter clinical trial (ClinicalTrials.gov, NCT02303730). Seventy-six patients were randomly assigned 1:1 to receive insulin glargine or exenatide treatment. The changes in psoas muscle area (PMA) (mm2) were obtained with the cross-sectional Dixonfat magnetic resonance images at the fourth lumber vertebra. RESULTS: There were no significant differences in age, BMI, gender, and PMA in insulin glargine and exenatide groups at baseline. After treatment, PMA tended to increase by 13.13 (-215.52, 280.80) mm2 in the insulin glargine group and decrease by 149.09 (322.90-56.39) mm2 in the exenatide group (both p>0.05). Subgroup analysis showed a 560.64 (77.88, 1043.40) (mm2) increase of PMA in the insulin group relative to the Exenatide group in patients with BMI<28 kg/m2 (p0.031) after adjusting for gender, age, and research center. Interaction analysis showed an interaction between BMI and treatment (p0.009). However, no interaction was observed among subgroups with a BMI≥28 kg/m2 or with different genders and ages. CONCLUSION: Compared to exenatide, insulin glargine can relativity increase PMA in patients with T2DM having BMI<28 kg/m2 and NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Masculino , Insulina Glargina/farmacología , Exenatida/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Transversales , Músculos , Hipoglucemiantes/farmacología , Ponzoñas/farmacología
17.
Acad Radiol ; 30 Suppl 1: S155-S163, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37407373

RESUMEN

RATIONALE AND OBJECTIVES: To evaluate the performance of attenuation imaging (ATI) based on ultrasound for detection of hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS: This prospective study was approved by our institutional review board (B2021-092R). Written informed consent was obtained from all patients. This study included 60 patients who had clinical suspicion of NAFLD and were referred for liver biopsy after ATI and controlled attenuation parameter (CAP) examinations between September 2020 and December 2021. The histologic hepatic steatosis was graded. The area under curve (AUC) analysis was performed. RESULTS: The success rate of the ATI examination was 100%. The intraobserver reproducibility of ATI was 0.981. The AUCs of ATI for detecting ≥S1, ≥S2, and S3 were 0.968 (cut-off value of 0.671 dB/cm/MHz), 0.911 (cut-off value of 0.726 dB/cm/MHz), and 0.766 (cut-off value of 0.757 dB/cm/MHz), respectively. The AUCs of CAP for detecting ≥S1, ≥S2, and S3 were 0.916 (cut-off value of 258.5 dB/m), 0.872 (cut-off value of 300.0 dB/m), and 0.807 (cut-off value of 315.0 dB/m), respectively. The diagnostic values showed no significant difference between ATI and CAP in detecting ≥S1, ≥S2, and S3 (P = .281, P = .254, and P = .330, respectively). The ATI had significant correlations with high-density lipoprotein cholesterol (P < .001), and with triglycerides (P = .015). CONCLUSION: ATI showed good feasibility and diagnostic performance in the detection of varying degrees of hepatic steatosis in NAFLD patients.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Hígado/diagnóstico por imagen , Hígado/patología , Estudios Prospectivos , Reproducibilidad de los Resultados , Diagnóstico por Imagen de Elasticidad/métodos , Curva ROC , Biopsia
18.
Mol Biochem Parasitol ; 255: 111575, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302489

RESUMEN

Diclazuril is a classic anticoccidial drug. The key molecules of diclazuril in anticoccidial action allows target screening for the development of anticoccidial drugs. Cyclin-dependent kinases (CDK) are prominent target proteins in apicomplexan parasites. In this study, a diclazuril anticoccidiosis animal model was established, and the transcription and translation levels of the CDK-related kinase 2 of Eimeria tenella (EtCRK2) were detected. mRNA and protein expression levels of EtCRK2 decreased in the infected/diclazuril group compared with those in the infected/control group. In addition, immunofluorescence analysis showed that EtCRK2 was localised in the cytoplasm of the merozoites. The fluorescence intensity of EtCRK2 in the infected/diclazuril group was significantly weaker than that in the infected/control group. The anticoccidial drug diclazuril against E.tenella affects the expression pattern of EtCRK2 molecule, and EtCRK2 is a potential target for new drug development.


Asunto(s)
Coccidiosis , Eimeria tenella , Animales , Eimeria tenella/genética , Merozoítos , Nitrilos/farmacología , Triazinas/farmacología , Pollos/parasitología , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Coccidiosis/parasitología
19.
Clin Exp Rheumatol ; 41(8): 1618-1631, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246768

RESUMEN

OBJECTIVES: During the development of systemic sclerosis (SSc), endothelial-mesenchymal transition (EndoMT) has been shown to be one of the mechanisms leading to pulmonary fibrosis. However, the correlation between hypoxia and EndoMT was mostly unknown. METHODS: R software was used to analyse differentially expressed genes (DEGs) in vascular endothelial cells under hypoxic conditions, and fibroblasts derived from SSc-related pulmonary fibrotic tissues, respectively. Using a web-based online Venn diagram tool, we analysed overlapping genes of DEGs between endothelial cells and fibroblasts. Finally, the protein-protein interaction network of EndoMT hub genes were constructed using the STRING database. The hub genes were knockdown by transfection of siRNAs in the hypoxia model of HULEC-5a cells constructed by liquid paraffin closure and then used to detect the effect on EndoMT-related biomarkers by western blot. RESULTS: In this study, we found that INHBA, DUSP1, NOX4, PLOD2, BHLHE40 were upregulated in SSc fibroblasts and hypoxic-treated endothelial cells, while VCAM1, RND3, CCL2, and TXNIP were downregulated. In the hypoxia model of HULEC-5a cells, the expression of these 9 hub genes was confirmed by western blot. In addition, through Spearman's correlation analysis and Western blot, we confirmed that these hub genes were closely related to the EndoMT-related markers. The mechanisms of these hypoxia-induced EndoMT hub genes may be related to TGF-ß, Notch, Wnt, NF-κ B, TNF and mTOR signalling pathways. CONCLUSIONS: Our study provides new insights into the occurrence and development of SSc-related pulmonary fibrosis resulting from hypoxia-induced EndoMT.


Asunto(s)
Fibrosis Pulmonar , Esclerodermia Sistémica , Humanos , Células Endoteliales/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transición Epitelial-Mesenquimal/genética , Esclerodermia Sistémica/patología , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología
20.
J Inflamm Res ; 16: 1533-1551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077220

RESUMEN

Introduction: Esophageal adenocarcinoma (EAC) is one of the histologic types of esophageal cancer with a poor prognosis. The majority of EAC originate from Barrett's esophagus (BE). There are few studies focusing on the dynamic progression of BE to EAC. Methods: R software was used to analyze differentially expressed genes (DEGs) based on RNA-seq data of 94 normal esophageal squamous epithelial (NE) tissues, 113 BE tissues and 147 EAC tissues. The overlapping genes of DEGs between BE and EAC were analyzed by Venn diagram tool. The hub genes were selected by Cytoscape software based on the protein-protein interaction network of the overlapping genes using STRING database. The functional analysis of hub genes was performed by R software and the protein expression was identified by immunohistochemistry. Results: In the present study, we found a large degree of genetic similarity between BE and EAC, and further identified seven hub genes (including COL1A1, TGFBI, MMP1, COL4A1, NID2, MMP12, CXCL1) which were all progressively upregulated in the progression of NE-BE-EAC. We have preliminarily uncovered the probable molecular mechanisms of these hub genes in disease development and constructed the ceRNA regulatory network of hub genes. More importantly, we explored the possibility of hub genes as biomarkers in the disease progression of NE-BE-EAC. For example, TGFBI can be used as biomarkers to predict the prognosis of EAC patients. COL1A1, NID2 and COL4A1 can be used as biomarkers to predict the response to immune checkpoint blockade (ICB) therapy. We also constructed a disease progression risk model for NE-BE-EAC based on CXCL1, MMP1 and TGFBI. Finally, the results of drug sensitivity analysis based on hub genes showed that drugs such as PI3K inhibitor TGX221, bleomycin, PKC inhibitor Midostaurin, Bcr-Abl inhibitor Dasatinib, HSP90 inhibitor 17-AAG, and Docetaxel may be potential candidates to inhibit the progression of BE to EAC. Conclusion: This study is based on a large number of clinical samples with high credibility, which is useful for revealing the probable carcinogenic mechanism of BE to EAC and developing new clinical treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...