Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nephrology (Carlton) ; 22(6): 490-493, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28429522

RESUMEN

Fabry disease (FD) is a lysosomal disorder caused by mutations leading to a deficient activity α-galactosidase A with progressive and systemic accumulation of its substrates. Substrates deposition is related to tissue damage in FD, but the underlying molecular mechanisms remain not completely understood. DNA damage has been associated with disease progression in chronic diseases and was recently described in high levels in Fabry patients. Once renal complications are major morbidity causes in FD, we investigated the effects of the latest biomarker for FD - globotriaosylsphingosine (lyso-Gb3) in a cultured renal lineage - human embryonic kidney cells (HEK-293 T) - on DNA damage. In concentrations found in Fabry patients, lyso-Gb3 induced DNA damage (by alkaline comet assay) with oxidative origin in purines and pyrimidines (by comet assay with endonucleases). These data provide new information about a deleterious effect of lyso-Gb3 and could be useful to studies looking for new therapeutic strategies to FD.


Asunto(s)
Daño del ADN/efectos de los fármacos , Glucolípidos/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Esfingolípidos/farmacología , Técnicas de Cultivo de Célula , Células HEK293 , Humanos , Riñón/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-26046974

RESUMEN

Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.


Asunto(s)
Daño del ADN , Reparación del ADN , Enfermedad de Fabry/genética , Peróxido de Hidrógeno/metabolismo , Adulto , Anciano , Enfermedad de Fabry/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Especies Reactivas de Oxígeno , Adulto Joven
3.
Int J Dev Neurosci ; 31(1): 21-4, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23137711

RESUMEN

Maple syrup urine disease (MSUD) is an inborn error of metabolism biochemically characterized by elevated levels of the branched chain amino acids (BCAA) leucine, isoleucine, valine and the corresponding branched-chain α-keto acids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. l-Carnitine (l-Car) plays a central role in the cellular energy metabolism because it transports long-chain fatty acids for oxidation and ATP generation. In recent years many studies have demonstrated the antioxidant role of this compound. In this work, we investigated the effect of BCAA-restricted diet supplemented or not with l-Car on lipid peroxidation and in protein oxidation in MSUD patients. We found a significant increase of malondialdehyde and of carbonyl content in plasma of MSUD patients under BCAA-restricted diet compared to controls. Furthermore, patients under BCAA-restricted diet plus l-Car supplementation presented a marked reduction of malondialdehyde content in relation to controls, reducing the lipid peroxidation. In addition, free l-Car concentrations were negatively correlated with malondialdehyde levels. Our data show that l-Car may have an antioxidant effect, protecting against the lipid peroxidation and this could represent an additional therapeutic approach to the patients affected by MSUD.


Asunto(s)
Carnitina/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Proteínas/metabolismo , Complejo Vitamínico B/uso terapéutico , Aminoácidos/metabolismo , Análisis de Varianza , Niño , Preescolar , Femenino , Humanos , Masculino , Malondialdehído/metabolismo , Carbonilación Proteica/efectos de los fármacos
4.
Mol Genet Metab ; 104(1-2): 112-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21742526

RESUMEN

Homocystinuria is an inherited disorder biochemically characterized by high urinary excretion of homocystine and increased levels of homocysteine (Hcy) and methionine in biological fluids. Affected patients usually have a variety of clinical and pathologic manifestations. Previous experimental data have shown a relationship between Hcy and oxidative stress, although very little was reported on this process in patients with homocystinuria. Therefore, in the present study we evaluated parameters of oxidative stress, namely carbonyl formation, malondialdehyde (MDA) levels, sulfhydryl content and total antioxidant status (TAS) in patients with homocystinuria at diagnosis and under treatment with a protein restricted diet supplemented by pyridoxine, folate, betaine, and vitamin B(12). We also correlated plasma Hcy and methionine concentrations with the oxidative stress parameters examined. We found a significant increase of MDA levels and carbonyl formation, as well as a reduction of sulfhydryl groups and TAS in plasma of homocystinuric patients at diagnosis relatively to healthy individuals (controls). We also verified that Hcy levels were negatively correlated with sulfhydryl content and positively with MDA levels. Furthermore, patients under treatment presented a significant reduction of the content of MDA, Hcy and methionine concentrations relatively to patients at diagnosis. Taken together, the present data indicate that lipid and protein oxidative damages are increased and the antioxidant defenses diminished in plasma of homocystinuric patients, probably due to increased reactive species elicited by Hcy. It is therefore presumed that oxidative stress participates at least in part in the pathogenesis of homocystinuria.


Asunto(s)
Homocisteína/sangre , Homocistinuria/sangre , Homocistinuria/patología , Estrés Oxidativo , Adolescente , Adulto , Antioxidantes/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Malondialdehído/sangre , Carbonilación Proteica , Compuestos de Sulfhidrilo/sangre , Adulto Joven
5.
Cell Biochem Funct ; 28(5): 360-6, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20589733

RESUMEN

Type 2 diabetes (T2D) is associated with increased oxidative stress as indicated by elevated levels of lipid peroxidation and protein oxidation products. Since reactive oxygen species (ROS) can cause damage to biological macromolecules including DNA, this study investigated oxidative damage to DNA using the alkaline (pH > 13) comet assay in peripheral whole blood leukocytes sampled from 15 dyslipidemic T2D patients treated with simvastatin (20 mg/day), 15 dyslipidemic T2D patients not treated with simvastatin, 20 non-dyslipidemic T2D patients, and 20 healthy individuals (controls). Our results showed a greater DNA migration in terms of damage index (DI) (p < 0.01) in the dyslipidemic T2D patients not treated with statin (DI = 67.70 +/- 10.89) when compared to the dyslipidemic T2D patients under statin treatment (DI = 47.56 +/- 7.02), non-dyslipidemic T2D patients (DI = 52.25 +/- 9.14), and controls (DI = 13.20 +/- 6.40). Plasma malondialdehyde (MDA) and C-reactive protein (CRP) levels were also increased and total antioxidant reactivity (TAR) and paraoxonase activity (PON1) decreased in non-dyslipidemic T2D patients and dyslipidemic T2D non-treated with simvastatin. We also found that DI was inversely correlated with TAR (r = -0.61, p < 0.05) and PON1 (r = -0.67, p < 0.01). In addition, there was a significant positive correlation between DI and CRP (r = 0.80, p < 0.01). Our results therefore indicate that simvastatin treatment plays a protective role on oxidative damage to DNA in dyslipidemic T2D patients probably reflecting a general decrease in oxidative stress in these patients.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Dislipidemias/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Leucocitos/efectos de los fármacos , Estrés Oxidativo , Simvastatina/uso terapéutico , Adulto , Anciano , Arildialquilfosfatasa/sangre , Proteína C-Reactiva/análisis , Ensayo Cometa , Daño del ADN , Dislipidemias/complicaciones , Femenino , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Masculino , Malondialdehído/sangre , Persona de Mediana Edad
6.
Arch Med Res ; 41(2): 104-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20470939

RESUMEN

BACKGROUND AND AIMS: Oxidative stress is considered an important factor in the development of diabetic complications that causes a variety of changes such as oxidative modification of membrane lipids, nucleic acids and cellular proteins. Dyslipidemia is frequently associated with diabetes and cardiovascular disease. In this context, the objective of this study was to evaluate oxidative modifications of plasma proteins and lipids in non dyslipidemic type 2 diabetic (T2D) patients, in dyslipidemic T2D patients treated or not with simvastatin and in healthy subjects to investigate whether treatment with low doses of simvastatin plays a protective role on the lipid and protein oxidative damage in these patients. METHODS: We determined oxidative damage of plasma proteins by carbonyl assay and total thiol group determination. We also characterized the membrane damage in terms of lipid peroxidation by measuring malonaldehyde (MDA) in nondyslipidemic T2D patients, dyslipidemic T2D patients treated with simvastatin (20 mg/day), dyslipidemic T2D patients not treated with simvastatin and in healthy age-matched control subjects. RESULTS: Our results showed that dyslipidemic T2D patients not treated with simvastatin had significantly higher plasma protein carbonyl groups and MDA when compared to dyslipidemic T2D patients treated with simvastatin and control group. Thiol concentrations from dyslipidemic T2D patients not treated with simvastatin were significantly lower than treated patients and controls. It was verified that the thiols groups were inversely correlated with apolipoprotein B and positively correlated with apolipoprotein A-I. CONCLUSIONS: These results demonstrated that treatment with low doses of simvastatin can minimize the protein and lipid oxidative damage in dyslipidemic T2D patients.


Asunto(s)
Apolipoproteínas/metabolismo , Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 2 , Hipolipemiantes/uso terapéutico , Estrés Oxidativo , Simvastatina/uso terapéutico , Adulto , Anciano , Biomarcadores/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Carbonilación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA