Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Cell Mol Med ; 28(16): e18588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39153206

RESUMEN

Huntington's disease (HD) is a gradually severe neurodegenerative ailment characterised by an increase of a specific trinucleotide repeat sequence (cytosine-adenine-guanine, CAG). It is passed down as a dominant characteristic that worsens over time, creating a significant risk. Despite being monogenetic, the underlying mechanisms as well as biomarkers remain poorly understood. Furthermore, early detection of HD is challenging, and the available diagnostic procedures have low precision and accuracy. The research was conducted to provide knowledge of the biomarkers, pathways and therapeutic targets involved in the molecular processes of HD using informatic based analysis and applying network-based systems biology approaches. The gene expression profile datasets GSE97100 and GSE74201 relevant to HD were studied. As a consequence, 46 differentially expressed genes (DEGs) were identified. 10 hub genes (TPM1, EIF2S3, CCN2, ACTN1, ACTG2, CCN1, CSRP1, EIF1AX, BEX2 and TCEAL5) were further differentiated in the protein-protein interaction (PPI) network. These hub genes were typically down-regulated. Additionally, DEGs-transcription factors (TFs) connections (e.g. GATA2, YY1 and FOXC1), DEG-microRNA (miRNA) interactions (e.g. hsa-miR-124-3p and has-miR-26b-5p) were also comprehensively forecast. Additionally, related gene ontology concepts (e.g. sequence-specific DNA binding and TF activity) connected to DEGs in HD were identified using gene set enrichment analysis (GSEA). Finally, in silico drug design was employed to find candidate drugs for the treatment HD, and while the possible modest therapeutic compounds (e.g. cortistatin A, 13,16-Epoxy-25-hydroxy-17-cheilanthen-19,25-olide, Hecogenin) against HD were expected. Consequently, the results from this study may give researchers useful resources for the experimental validation of Huntington's diagnosis and therapeutic approaches.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Enfermedad de Huntington , Mapas de Interacción de Proteínas , Enfermedad de Huntington/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Humanos , Biología Computacional/métodos , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Perfilación de la Expresión Génica , Biomarcadores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Transcriptoma/genética , Ontología de Genes , MicroARNs/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Phytomedicine ; 133: 155928, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126924

RESUMEN

BACKGROUND: The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE: This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS: Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS: Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION: Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.

3.
J Ethnopharmacol ; 336: 118695, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142619

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional use of plants for medicinal purposes, called phytomedicine, has been known to provide relief from pain. In Bangladesh, the Chakma indigenous community has been using Allophylus villosus and Mycetia sinensis to treat various types of pain and inflammation. AIM OF THE STUDY: The object of this research is to evaluate the effectiveness of these plants in relieving pain and their antioxidant properties using various approaches such as in vitro, in vivo, and computational techniques. Additionally, the investigation will also analyse the phytochemicals present in these plants. MATERIALS AND METHODS: We conducted in vivo analgesic experiment on Swiss albino mice and in-silico inhibitory activities on COX-2 & 15-LOX-2 enzymes. Assessment of DPPH, Anti Radical Activities (ARA), FRAP, H2O2 Free Radical Scavenging, Reducing the power of both plants performed significant % inhibition with tolerable IC50. Qualitative screening of functional groups of phytochemicals was précised by FTIR and GC-MS analysis demonstrated phytochemical investigations. RESULTS: The ethyl acetate (EtOAc) fractioned Mycetia sinensis extract as well as the ethanoic extract and all fractioned extracts of Allophylus villosus have reported a significant percentage (%) of writhing inhibition (p < 0.05) with the concentrated doses 250 mg as well as 500 mg among the Swiss albino mice for writhing observation of analgesic effect. In the silico observation, a molecular-docking investigation has performed according to GC-MS generated 43 phyto-compounds of both plants to screen their binding affinity by targeting COX-2 and 15-LOX-2 enzymes. Consequently, in order to assess and ascertain the effectiveness of the sorted phytocompounds, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) investigation, DFT (Density-functional theory) by QM (Quantum mechanics), and MDS (Molecular dynamics simulation) were carried out. As the outcome, compounds like 5-(2,4-ditert-butylphenoxy)-5-oxopentanoic acid; 2,4-ditert-butylphenyl 5-hydroxypentanoate; 3,3-diphenyl-5-methyl-3H-pyrazole; 2-O-(6-methylheptan-2-yl) 1-O-octyl benzene-1,2-dicarboxylate and dioctan-3-yl benzene-1,2-dicarboxylate derived from the ethnic plant A. villosus and another ethnic plant M. sinensis extracts enchants magnificent analgesic inhibitions and performed more significant drug like activities with the targeted enzymes. CONCLUSIONS: Phytocompounds from A. villosus & M. sinensis exhibited potential antagonist activity against human 15-lipoxygenase-2 and cyclooxygenase-2 proteins. The effective ester compounds from these plants performed more potential anti-nociceptive activity which could be used as a drug in future.

4.
Biomed Pharmacother ; 176: 116860, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38861855

RESUMEN

Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.


Asunto(s)
Neoplasias , Quercetina , Humanos , Quercetina/farmacología , Quercetina/análogos & derivados , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos
6.
Saudi Pharm J ; 32(1): 101884, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090733

RESUMEN

Diabetes mellitus (DM) is a metabolic disorder arising from insulin deficiency and defectiveness of the insulin receptor functioning on transcription factor where the body loses control to regulate glucose metabolism in ß-cells, pancreatic and liver tissues to homeostat glucose level. Mainstream medicines used for DM are incapable of restoring normal glucose homeostasis and have side effects where medicinal plant-derived medicine administrations have been claimed to cure diabetes or at least alleviate the significant symptoms and progression of the disease by the traditional practitioners. This study focused on screening phytocompounds and their pharmacological effects on anti-hyperglycemia on Swiss Albino mice of n-hexane, ethyl acetate, and ethanol extract of both plants Mycetia sinensis and Allophylus villosus as well as the in-silico investigations. Qualitative screening of phytochemicals and total phenolic and flavonoid content estimation were performed significantly in vitro analysis. FTIR and GC-MS analysis précised the functional groups and phytochemical investigations where FTIR scanned 14, 23 & 17 peaks in n-hexane, ethyl acetate, and ethanol extracts of Mycetia sinensis whereas the n-hexane, ethyl acetate, and ethanol extracts of Allophylus villosus scanned 11 peaks, 18 peaks, and 29 peaks, respectively. In GC-MS, 24 chemicals were identified in Mycetia sinensis extracts, whereas 19 were identified in Allophylus villosus extracts. Moreover, both plants' ethyl acetate and ethanol fractioned extracts were reported significantly (p < 0.05) with concentrations of 250 mg and 500 mg on mice for oral glucose tolerance test, serum creatinine test and serum alkaline phosphatase test. In In silico study, a molecular docking study was done on these 43 phytocompounds identified from Mycetia sinensis and Allophylus villosus to identify their binding affinity to the target Alpha Glucosidase (AG) and Peroxisome proliferator-activated receptor gamma protein (PPARG). Therefore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, quantum mechanics-based DFT (density-functional theory), and molecular dynamics simulation were done to assess the effectiveness of the selected phytocompounds. According to the results, phytocompounds such as 2,4-Dit-butyl phenyl 5-hydroxypentanoate and Diazo acetic acid (1S,2S,5R)-2-isopropyl-5-methylcyclohexyl obtained from Mycetia sinensis and Allophylus villosus extract possess excellent antidiabetic activities.

7.
Saudi Pharm J ; 32(1): 101887, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090734

RESUMEN

Traditional medicinal plants have played a promising role in the human health system. In folklore medicine, Crotalaria quinquefolia L. is used to treat fever, pain, eczema, impetigo, lung infections, scabies. The present investigation was executed to identify secondary metabolites responsible for anti-diabetic potential of C. quinquefolia L. leaf extract along with their possible mechanistic pathways. The anti-hyperglycemic activity was assessed by in vitro α-amylase and α-glucosidase inhibitory assays and an in vivo oral glucose tolerance test and diabetogenic effect of streptozotocin in mice, followed by an integrative computational analysis. A total of 23 compounds were identified through GCMS and HPLC. The extract showed potent in-vitro α-amylase and α-glucosidase suppressive activity with IC50 values of 12.8 ± 0.1 µg/mL and 36.3 ± 0.07 µg/mL, respectively. In an in vivo oral glucose tolerance test, the extract (400 mg/kg body weight) prompted blood glucose levels to plummet by 18.9 % after 30 min, compared to the normal control and streptozotocin induced diabetes test, maximum glucose reduction was observed 11.67 % by dose of 200 mg/kg compared to the control; glibenclamide and extract (400 mg/kg) reduced blood glucose levels by 1.3 % and 16.7 %, respectively, compared to diabetic control at the end of the trial. Additionally, among the identified compounds, myricetin, quercetin, rutin, and kaempferol revealed good binding affinity as well as stability with the studied anti-diabetic proteins in docking and molecular dynamics simulation studies. Furthermore, QSAR analysis and network pharmacology studies of the identified compounds divulged enhanced insulin secretion stimulation, insulin receptor kinase activity, PPARγ expression; enzyme inhibition (α-glucosidase, α-amylase) and protection of the pancreas -mediated antidiabetic effects. Besides, they proved strong inhibitory potential against the studied antidiabetic proteins in other computational analysis. Based on the present findings, it can be affirmed that C. quinquefolia extract possesses anti-diabetic activity.

8.
Front Oncol ; 13: 1228865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817764

RESUMEN

Breast and lung cancer are two of the most lethal forms of cancer, responsible for a disproportionately high number of deaths worldwide. Both doctors and cancer patients express alarm about the rising incidence of the disease globally. Although targeted treatment has achieved enormous advancements, it is not without its drawbacks. Numerous medicines and chemotherapeutic drugs have been authorized by the FDA; nevertheless, they can be quite costly and often fall short of completely curing the condition. Therefore, this investigation has been conducted to identify a potential medication against breast and lung cancer through structural modification of genistein. Genistein is the active compound in Glycyrrhiza glabra (licorice), and it exhibits solid anticancer efficiency against various cancers, including breast cancer, lung cancer, and brain cancer. Hence, the design of its analogs with the interchange of five functional groups-COOH, NH2 and OCH3, Benzene, and NH-CH2-CH2-OH-have been employed to enhance affinities compared to primary genistein. Additionally, advanced computational studies such as PASS prediction, molecular docking, ADMET, and molecular dynamics simulation were conducted. Firstly, the PASS prediction spectrum was analyzed, revealing that the designed genistein analogs exhibit improved antineoplastic activity. In the prediction data, breast and lung cancer were selected as primary targets. Subsequently, other computational investigations were gradually conducted. The mentioned compounds have shown acceptable results for in silico ADME, AMES toxicity, and hepatotoxicity estimations, which are fundamental for their oral medication. It is noteworthy that the initial binding affinity was only -8.7 kcal/mol against the breast cancer targeted protein (PDB ID: 3HB5). However, after the modification of the functional group, when calculating the binding affinities, it becomes apparent that the binding affinities increase gradually, reaching a maximum of -11.0 and -10.0 kcal/mol. Similarly, the initial binding affinity was only -8.0 kcal/mol against lung cancer (PDB ID: 2P85), but after the addition of binding affinity, it reached -9.5 kcal/mol. Finally, a molecular dynamics simulation was conducted to study the molecular models over 100 ns and examine the stability of the docked complexes. The results indicate that the selected complexes remain highly stable throughout the 100-ns molecular dynamics simulation runs, displaying strong correlations with the binding of targeted ligands within the active site of the selected protein. It is important to further investigate and proceed to clinical or wet lab experiments to determine the practical value of the proposed compounds.

9.
Arch Biochem Biophys ; 747: 109763, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739116

RESUMEN

OBJECTIVE: Cardiac hypertrophy is a condition of abnormal cardiomyocyte enlargement accompanied by ventricular wall thickening. The study aims to investigate the role of miR-15a-5p in the regulation of mitofusin-2 (MFN-2) and to explore the cardioprotective effect of terpolymers ES-37 and L-37. METHODS: In this study, the Sprague Dawley rats' cardiac hypertrophic model was established by administering 5 mg/kg Isoproterenol subcutaneously every other day for 14 days. As treatment rats received NAC (50 mg/kg), NAC treatment (50 mg/kg NAC + 5 mg/kg ISO), ES-37 (1 mg/kg) and ES-37 treatment (1 mg/kg ES-37+5 mg/kg ISO), L-37 (1 mg/kg) and L-37 treatment (1 mg/kg L-37+5 mg/kg ISO). subcutaneously every other day for 14 days. NAC, ES 37 and L-37 were given after 1 h of Isoproterenol administration in treatment groups. Cardiac hypertrophy was confirmed through morphological and histological analysis. For estimation of oxidative stress profiling, ROS and TBARS and antioxidative profiling superoxide dismutase (SOD), Catalase, and Glutathione (GSH) levels were checked. Triglyceride, cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) were performed to evaluate levels of lipid profiling and liver profiling. Molecular expression analysis was checked through real-time PCR, and western blotting both at the transcriptional and translational levels. Molecular docking studies were performed to study the interactions and modes of binding between the synthetic polymers with three proteins (Mitofusin-2, DRP-1 and PUMA). All the studies were carried out using the AutoDock Vina software and the protein-ligand complexes were visualized in Biovia Discovery Studio. Cardiac hypertrophy was confirmed by the relative changes in the cellular structure of the heart by histopathological examination and physiological changes by estimating organ weights. Biochemical profiling results depict elevated oxidative and lipid profiles signify myocardial damage. N-acetyl cysteine (NAC), ES-37, and L-37 overcome the cardiac hypertrophic responses through attenuating oxidative stress and enhancing the antioxidative signaling mechanism. miR-15a-5p was identified as hypertrophic microRNA directly regulating the expression of Mitofusin-2 (MFN-2). Significantly increased expression of miR-15a-5p, Dynamin related protein 1 (Drp1), and P53 upregulated modulator of apoptosis (PUMA), was observed in the disease group, whereas MFN-2 expression was observed downregulated. N-acetyl cysteine (NAC), ES-37, and L-37 showed increased expression of antiapoptotic maker MFN-2 and decreased expression of miR-15a-5p, Drp1, and PUMA in treatment groups suggesting their cardioprotective role in attenuation of cardiac hypertrophy. An analysis of the docking results shows that ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. CONCLUSION: The physiochemical properties of ES-37 and L-37 predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS. Molecular docking results shows that the polymer ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. Thus, the study validates the role and targeting of miR-15a-5p and MFN-2 in cardiac hypertrophy as well as the therapeutic potential of NAC, ES-37, and L-37 in overcoming oxidative stress and myocardial damage.

10.
Saudi Pharm J ; 31(8): 101681, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576860

RESUMEN

Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.

11.
Pharmaceuticals (Basel) ; 16(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37375752

RESUMEN

In this innovative research, a novel series of thiazolidin-4-one analogues having a 1,3,4-oxadiazole/thiadiazole moiety were derived and the structures of all the newly obtained molecules were established using different physicochemical and analytical means (1H-NMR, FTIR, mass spectra, and elemental analyses). The synthesized molecules were then investigated for their antiproliferative, antimicrobial, and antioxidant potential. The cytotoxicity screening studies revealed that analogues D-1, D-6, D-15, and D-16 possessed comparable efficacy, within the IC50 range (1 to 7 µM), when taking doxorubicin as a reference drug (IC50 = 0.5 µM). The antimicrobial activity was assessed using different Gram-(+) and Gram-(-) bacterial and fungal strains and the results revealed that molecules D-2, D-4, D-6, D-19, and D-20 possessed potent activity against selective strains of microbes with MIC ranges of 3.58 to 8.74 µM. The antioxidant evaluation was performed using the DPPH assay and the screening results revealed that analogue D-16 was the most potent derivative (IC50 = 22.3 µM) when compared with the positive control, ascorbic acid (IC50 = 111.6 µM). Structure-activity relationship (SAR) studies of the synthesized novel derivatives revealed that para-substituted halogen and hydroxy derivatives have remarkable potential against the MCF-7 cancer cell line and antioxidant potential. Similarly, electron-withdrawing groups (Cl/NO2) and -donating groups at the para position possess moderate to promising antimicrobial potential.

12.
Gels ; 9(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37232986

RESUMEN

Curcumin has been used in traditional medicine forages. The present study aimed to develop a curcumin-based hydrogel system and assess its antimicrobial potential and wound healing (WH) activity on an invitro and in silico basis. A topical hydrogel was prepared using chitosan, PVA, and Curcumin in varied ratios, and hydrogels were evaluated for physicochemical properties. The hydrogel showed antimicrobial activity against both gram-positive and gram-negative microorganisms. In silico studies showed good binding energy scores and significant interaction of curcumin components with key residues of inflammatory proteins that help in WH activity. Dissolution studies showed sustained release of curcumin. Overall, the results indicated wound healing potential of chitosan-PVA-curcumin hydrogel films. Further in vivo experiments are needed to evaluate the clinical efficacy of such films for wound healing.

13.
Metabolites ; 13(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37110160

RESUMEN

As the Urtica dioica L. whole plant's essential oil has presented significant multiple activities, it was therefore evaluated using the GC-MS technique. This essential oil was investigated for its antioxidant, phytotoxic, and antibacterial activities in vitro. The GC-MS analysis data assisted in the identification of various constituents. The study of the essential oil of U. dioica showed potential antioxidant effects and antibacterial activity against the selected pathogens Escherichia coli -ATCC 9837 (E. coli), Bacillus subtilis-ATCC 6633 (B. subtilis), Staphylococcus aureus-ATCC6538 (S. aureus), Pseudomonas aeruginosa-ATCC 9027 (P. aeruginosa), and Salmonella typhi-ATCC 6539 (S. typhi). The library of 23 phytochemicals was docked by using MOE software, and three top virtual hits with peroxiredoxin protein [PDB ID: 1HD2] and potential target protein [PDB ID: 4TZK] were used; hence, the protein-ligand docking results estimated the best binding conformations and a significant correlation with the experimental analysis, in terms of the docking score and binding interactions with the key residues of the native active binding site. The essential oil in the silico pharmacokinetic profile explained the structure and activity relationships of the selected best hits, and their additional parameters provided insight for further clinical investigations. Therefore, it is concluded that the U. dioica essential oil could be a potent antioxidant and antibacterial agent for aromatherapy through its topical application, if further tested in a laboratory and validated.

14.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111274

RESUMEN

By exploiting the ample biological potential of 1,3,4-oxadiazole/thiadiazole ring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. Various substituted azetidin-2-one derivatives have been identified as immunostimulating and antimicrobial, as well as their antioxidant activity. 2-amino 1,3,4 oxadiazole/thiadiazole conjugates were synthesized by mixing semi/thio carbazides and sodium acetate with water and stirring well, followed by adding aldehydes in methanol at room temperature. Acetate (glacial) was used as the catalyst to produce Schiff's bases (intermediates) by treating substituted aldehydes with 2-amino 1,3,4 oxadiazole/thiadiazole(s). Using the mixture of triethylamine (dropwise) and chloroacetylchloride with vigorous stirring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. The newly synthesized conjugates were evaluated for their anticancer potential using MCF-7 cell lines. Amoxicillin and fluconazole were used as reference drugs to determine their antimicrobial activity. Synthesized derivatives were evaluated for their antioxidant properties using 2-diphenyl-1-picrylhydrazyl (DPPH). In vitro cytotoxicity screening (MTTS assay) revealed that derivatives AZ-5, 9, 10, 14 and 19 demonstrated high efficacy with the percentage of inhibition at different concentration ranges (0.1 µM, 0.5 µM, 1 µM, 2 µM) of 89% to 94% µM as compared to doxorubicin as standard drug. The antimicrobial study indicated that compounds AZ-10, 19, and AZ-20 were found to have significant antimicrobial potential with MIC ranges of 3.34 µM to 3.71 µM in comparison to reference drugs having 4.29 µM to 5.10 µM. Based on antioxidant screening, most of the synthetic derivatives showed greater stability and effectiveness than the standard drug. According to the antioxidant screening, compounds AZ-5 and AZ-15 (IC50 = 45.02 µg/mL and 42.88 µg/mL, respectively) showed the greatest potency, as compared to ascorbic acid (IC50 = 78.63 µg/mL). Structure-activity relationship (SAR) studies of synthesized novel derivatives revealed that para-substituted halogen and nitro derivatives have remarkable potential against MCF-7 cancer cell lines and different microbial strains. Current evidence indicates that the synthesized derivatives may be promising candidates for use in the prevention and treatment of these infections. These synthesized compounds require further mechanism-based research to understand how they interact with the cells.

15.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049742

RESUMEN

An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Variaciones en el Número de Copia de ADN , Pronóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Biomarcadores , Desarrollo de Medicamentos , Encéfalo/metabolismo
16.
Cancers (Basel) ; 15(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37046789

RESUMEN

Despite significant therapeutic advancements for cancer, an atrocious global burden (for example, health and economic) and radio- and chemo-resistance limit their effectiveness and result in unfavorable health consequences. Natural compounds are generally considered safer than synthetic drugs, and their use in cancer treatment alone, or in combination with conventional therapies, is increasingly becoming accepted. Interesting outcomes from pre-clinical trials using Baicalein in combination with conventional medicines have been reported, and some of them have also undergone clinical trials in later stages. As a result, we investigated the prospects of Baicalein, a naturally occurring substance extracted from the stems of Scutellaria baicalensis Georgi and Oroxylum indicum Kurz, which targets a wide range of molecular changes that are involved in cancer development. In other words, this review is primarily driven by the findings from studies of Baicalein therapy in several cancer cell populations based on promising pre-clinical research. The modifications of numerous signal transduction mechanisms and transcriptional agents have been highlighted as the major players for Baicalein's anti-malignant properties at the micro level. These include AKT serine/threonine protein kinase B (AKT) as well as PI3K/Akt/mTOR, matrix metalloproteinases-2 & 9 (MMP-2 & 9), Wnt/-catenin, Poly(ADP-ribose) polymerase (PARP), Mitogen-activated protein kinase (MAPK), NF-κB, Caspase-3/8/9, Smad4, Notch 1/Hes, Signal transducer and activator of transcription 3 (STAT3), Nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap 1), Adenosine monophosphate-activated protein kinase (AMPK), Src/Id1, ROS signaling, miR 183/ezrin, and Sonic hedgehog (Shh) signaling cascades. The promise of Baicalein as an anti-inflammatory to anti-apoptotic/anti-angiogenic/anti-metastatic medicinal element for treating various malignancies and its capability to inhibit malignant stem cells, evidence of synergistic effects, and design of nanomedicine-based drugs are altogether well supported by the data presented in this review study.

18.
Biomed Pharmacother ; 158: 114172, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916399

RESUMEN

Nanotechnology encompasses a wide range of devices derived from biology, engineering, chemistry, and physics, and this scientific field is composed of great collaboration among researchers from several fields. It has diverse implications notably smart sensing technologies, effective disease diagnosis, and sometimes used in treatment. In medical science, the implications of nanotechnology include the development of elements and devices that interact with the body at subcellular (i.e., molecular) levels exhibiting high sensitivity and specificity. There is a plethora of new chances for medical science and disease treatment to be discovered and exploited in the rapidly developing field of nanotechnology. In different sectors, nanomaterials are used just because of their special characteristics. Their large surface area of them enables higher reactivity with greater efficiency. Furthermore, special surface chemistry is displayed by nanomaterials which compare to conventional materials and facilitate the nanomaterials to decrease pollutants efficiently. Recently, nanomaterials are used in some countries to reduce the levels of contaminants in water, air, and soil. Moreover, nanomaterials are used in the cosmetics and medical industry, and it develops the drug discovery (DD) system. Among a huge number of nanomaterials, Cu, Ag, TiO2, ZnO, Fe3O4, and carbon nanotubes (CNTs) are extensively used in different industries for various purposes. This extensive review study has introduced the major scientific and technical features of nanotechnology, as well as some possible clinical applications and positive feedback in environmental waste management and drug delivery systems.


Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanotecnología , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos
19.
Genes (Basel) ; 14(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36980982

RESUMEN

Ophiocordyceps lanpingensis (O. lanpingensis) belongs to the genus Ophiocordyceps, which is often found in Yunnan Province, China. This species is pharmacologically important for the treatment of renal disorders induced by oxidative stress and an inadequate immune response. In the present study, the mitogenome of O. lanpingensis was determined to be a circular molecule 117,560 bp in length, and to have 31% G + C content and 69% A + T content. This mitogenome comprised 82% of the whole genome that codes for significant genes. The protein-coding regions of the O. lanpingensis mitogenome, containing 24 protein-coding genes, were associated with respiratory chain complexes, such as 3 ATP-synthase complex F0 subunits (atp6, atp8, and atp9), 2 complex IV subunits/cytochrome c oxidases (cox2 and cox3), 1 complex III subunit (cob), 4 electron transport complex I subunits/NADH dehydrogenase complex subunits (nad1, nad4, nad5, and nad6), 2 ribosomal RNAs (rns, rnl), and 11 hypothetical/predicted proteins, i.e., orf609, orf495, orf815, orf47, orf150, orf147, orf292, orf127, orf349, orf452, and orf100. It was noted that all genes were positioned on the same strand. Further, 13 mitochondrial genes with respiratory chain complexes, which presented maximum similarity with other fungal species of Ophiocordyceps, were investigated. O. lanpingensis was compared with previously sequenced species within Ophiocordycepitaceae. Comparative analysis indicated that O. lanpingensis was more closely related to O. sinensis, which is one of the most remarkable and expensive herbs due to its limited availability and the fact that it is difficult to culture. Therefore, O. lanpingensis is an important medicinal resource that can be effectively used for medicinal purposes. More extensive metabolomics research is recommended for O. lanpingensis.


Asunto(s)
Hypocreales , Filogenia , China , Secuencia de Bases , Hypocreales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...