Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174646, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986696

RESUMEN

Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.


Asunto(s)
Gases de Efecto Invernadero , Lagos , Metano , Microbiota , Lagos/química , Lagos/microbiología , Gases de Efecto Invernadero/análisis , Brasil , Metano/análisis , Monitoreo del Ambiente , Humedales , Eutrofización , Contaminantes Atmosféricos/análisis
2.
Environ Microbiome ; 19(1): 48, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020395

RESUMEN

Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.

3.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459811

RESUMEN

Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Ecosistema , Brasil , Secuestro de Carbono , Dióxido de Carbono/análisis , Estiércol , Carbono/análisis , Bosques , Árboles
4.
Sci Total Environ ; 888: 164175, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37201828

RESUMEN

Brazilian sugarcane plays a vital role in the production of both sugar and renewable energy. However, land use change and long-term conventional sugarcane cultivation have degraded entire watersheds, including a substantial loss of soil multifunctionality. In our study, riparian zones have been reforested to mitigate these impacts, protect aquatic ecosystems, and restore ecological corridors within the sugarcane production landscapes. We examined (i) how forest restoration enables rehabilitation of the soil's multifunctionality after long-term sugarcane cultivation and (ii) how long it takes to regain ecosystem functions comparable to those of a primary forest. We investigated a time series of riparian forests at 6, 15, and 30 years after starting restoration by planting trees (named 'active restoration') and determined soil C stocks, δ13C (indicative of C origin), as well as measures indicative of soil health. A primary forest and a long-term sugarcane field were used as references. Eleven soil physical, chemical, and biological indicators were used for a structured soil health assessment, calculating index scores based on soil functions. Forest-to-cane conversion reduced 30.6 Mg ha-1 of soil C stocks, causing soil compaction and loss of cation exchange capacity, thus degrading soil's physical, chemical, and biological functions. Forest restoration for 6-30 years recovered 16-20 Mg C ha-1 stored in soils. In all restored sites, soil functions such as supporting root growth, aerating the soil, nutrient storage capacity, and providing C energy for microbial activity were gradually recovered. Thirty years of active restoration was sufficient to reach the primary forest state in overall soil health index, multifunctional performance, and C sequestration. We conclude that active forest restoration in sugarcane-dominated landscapes is an effective way to restore soil multifunctionality approaching the level of the native forest in approximately three decades. Moreover, the C sequestration in the restored forest soils will help to mediate global warming.


Asunto(s)
Ecosistema , Saccharum , Suelo , Carbono , Bosques , Árboles , Grano Comestible
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA