RESUMEN
Background: Hypertension is a global issue that is projected to worsen with increasingly obese populations. The central nervous system including the parts of the cortex plays a key role in hemodynamic stability and homeostatic control of blood pressure (BP), making them critical components in understanding and investigating the neural control of BP. This study investigated the effects of anodal transcranial direct current stimulation (tDCS) associated with aerobic physical exercise on BP and heart rate variability in hypertensive patients. Methods: Twenty hypertensive patients were randomized into two groups: active tDCS associated with aerobic exercise or sham tDCS associated with aerobic exercise. BP and heart rate variability were analyzed before (baseline) and after twelve non-consecutive sessions. After each tDCS session (2 mA for 20 min), moderate-intensity aerobic exercise was carried out on a treadmill for 40 min. Results: A total of 20 patients were enrolled (53.9 ± 10.6 years, 30.1 ± 3.7 Kg/m2). There were no significant interactions between time and groups on diastolic BP during wake, sleep, over 24 and 3 h after the last intervention. Heart rate variability variables showed no significant difference for time, groups and interaction analysis, except for HF (ms2) between groups (p < 0.05). Conclusion: Anodal tDCS over the temporal cortex associated with aerobic exercise did not induce improvements in BP and heart rate variability. Clinical trial registration: https://ensaiosclinicos.gov.br/rg/RBR-56jg3n/1, identifier: RBR-56jg3n.
RESUMEN
BACKGROUND: Chikungunya virus (CHIKV) is a globally prevalent pathogen, with outbreaks occurring in tropical regions. Chronic pain is the main symptom reported and is associated with decreased mobility and disability. Transcranial direct current stimulation (tDCS) is emerging as a new therapeutic tool for chronic arthralgia. OBJECTIVE: To evaluate the effectiveness of 10 consecutive sessions of anodal tDCS on pain (primary outcome) in participants with chronic CHIKV arthralgia. Secondary outcomes included functional status, quality of life, and mood. METHODS: In this randomized, double-blind, placebo-controlled trial, 30 participants with chronic CHIKV arthralgia were randomly assigned to receive either active (n = 15) or sham (n = 15) tDCS. The active group received 10 consecutive sessions of tDCS over M1 using the C3/Fp2 montage (2 mA for 20 min). Visual analog scale of pain (VAS), health assessment questionnaire (HAQ), short-form 36 health survey (SF-36), pain catastrophizing scale, Hamilton anxiety scale (HAS), timed up and go (TUG) test, lumbar dynamometry, 30-s arm curl and 2-min step test were assessed at baseline, day 10 and at 2 follow-up visits. RESULTS: There was a significant interaction between group and time on pain (p = 0.03; effect size 95 % CI 0.9 (-1.67 to -0.16), with a significant time interaction (p = 0.0001). There was no interaction between time and group for the 2-minute step test (p = 0.18), but the groups differed significantly at day 10 (p = 0.01), first follow-up (p = 0.01) and second follow-up (p = 0.03). HAQ and SF-36 improved but not significantly. There was no significant improvement in mental health, and physical tests. CONCLUSION: tDCS appears to be a promising intervention for reducing pain in participants with chronic CHIKV arthralgia, although further research is needed to confirm these findings and explore potential long-term benefits. TRIAL REGISTRATION: Brazilian Registry of Clinical Trials (ReBEC): RBR-245rh7.
Asunto(s)
Fiebre Chikungunya , Dolor Crónico , Corteza Motora , Calidad de Vida , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estimulación Transcraneal de Corriente Directa/métodos , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/terapia , Método Doble Ciego , Adulto , Dolor Crónico/terapia , Dolor Crónico/etiología , Dolor Crónico/psicología , Corteza Motora/fisiopatología , Artralgia/terapia , Artralgia/etiología , Resultado del Tratamiento , Dimensión del Dolor , Enfermedad CrónicaRESUMEN
BACKGROUND: and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue. METHODS: Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL. RESULTS: Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09). CONCLUSION: An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.
Asunto(s)
COVID-19 , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , SARS-CoV-2 , Calidad de Vida , Síndrome Post Agudo de COVID-19 , COVID-19/complicaciones , Dolor/etiología , Fatiga/etiología , Fatiga/terapia , Encéfalo/fisiologíaRESUMEN
The negative effect of prolonged cognitive demands on psychomotor skills in athletes has been demonstrated. Transcranial direct current stimulation (tDCS) could be used to mitigate this effect. This study examined the effects of tDCS over the left dorsolateral prefrontal cortex (DLPFC) during a 30-min inhibitory Stroop task on cognitive and shooting performances of professional female basketball players. Following a randomised, double-blinded, sham-controlled, cross-over design, players were assigned to receive anodal tDCS (a-tDCS, 2 mA for 20 min) or sham-tDCS in two different sessions. Data from 8 players were retained for analysis. Response Time decreased significantly over time (p < 0.001; partial η2 = 0.44; no effect of condition, or condition vs. time interaction). No difference in mean accuracy and shooting performance was observed between tDCS conditions. The results suggest that a-tDCS exert no additional benefits in reducing the negative effects of prolonged cognitive demands on technical performance compared to sham (placebo).Practitioner summary: Prolonged cognitive demands can negatively affect the athletes' performance. We tested whether transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) could attenuate these effects on cognitive and shooting performance in professional female basketball players. However, tDCS did not exert any additional benefits compared to sham.Abbreviations: tDCS: transcranial direct current stimulation; a-tDCS: anodal transcranial direct current stimulation; PFC: prefrontal cortex; DLPFC: dorsolateral prefrontal cortex; PCT: prolonged cognitive task; TT: time trial; RT: response time; NASA-TLX: National Aeronautics and Space Administration Task Load Index; RPE: ratings of perceived exertion; CR-10 scale: category rating scale; EEG: electroencephalogram; AU: arbitrary units.
Asunto(s)
Baloncesto , Estimulación Transcraneal de Corriente Directa , Femenino , Humanos , Cognición/fisiología , Electroencefalografía , Corteza Prefrontal/fisiología , Estudios Cruzados , Interacción de Doble VínculoRESUMEN
This supplementary dataset is supportive of the randomized sham-controlled, double-blind, crossover clinical trial investigating polarity- and intensity-dependent effects of high-definition transcranial electrical stimulation (HD-tDCS) applied over the right temporo-parietal junction on mean middle cerebral artery blood flow velocity (MCA-BFv) bilaterally. Data of eleven healthy right-handed adults (6 women, 5 men; mean age 31 ± 5.6 years old) were analyzed for MCA-BFv, assessed using transcranial doppler ultrasound on the stimulated and the contralateral hemisphere concomitantly, during and after 3 blocks of 2 min HD-tDCS at 1, 2, and 3 mA. Participants received three electrical stimulation conditions (anode center, cathode center, and sham) randomly ordered across different days. The collected data is publicly available at Mendeley Data. This article and the data will inform future related investigations and safety analysis of transcranial non-invasive brain stimulation.
RESUMEN
Since neuronal activity is coupled with neurovascular activity, we aimed to analyze the cerebral blood flow hemodynamics during and following high-definition transcranial direct current stimulation (HD-tDCS). We assessed the mean middle cerebral artery blood flow velocity (MCA-BFv) bilaterally using transcranial doppler ultrasound, during and after HD-tDCS, in eleven right-handed healthy adult participants (6 women, 5 men; mean age 31 ± 5.6 years old), with no evidence of brain or cardiovascular dysfunction. The HD-tDCS electrode montage was centered over the right temporo-parietal junction. The stimulation protocol comprised 3 blocks of 2 min at each current intensity (1, 2, and 3 mA) and an inter-stimulus interval of 5 min between blocks. Participants received three electrical stimulation conditions (anode center, cathode center, and sham) on three different days, with an interval of at least 24 h. Stimulation was well tolerated across HD-tDCS conditions tested, and the volunteers reported no significant discomfort related to stimulation. There was no significant difference in the right or the left MCA-BFv during or after the stimulation protocol across all stimulation conditions. We conclude that at a range of intensities, vascular reaction assessed using middle cerebral artery blood flow is not significantly altered during or after HD-tDCS both locally and remotely, which provides further evidence for the safety of HD-tDCS.
Asunto(s)
Estimulación Transcraneal de Corriente Directa , Adulto , Encéfalo/fisiología , Estimulación Eléctrica , Femenino , Hemodinámica , Humanos , Masculino , Arteria Cerebral Media/diagnóstico por imagen , Estimulación Transcraneal de Corriente Directa/métodosRESUMEN
CONTEXT: Chronic pain in end-stage renal disease (ESRD) is an increasingly neglected clinical problem affecting more than 60% of patients. Long-term chronic pain could be associated with brain imbalance in circuits of pain matrix and is associated with poor quality of life (QoL) and mood disturbance. OBJECTIVES: The aim of this study was evaluating the effects of transcranial direct current stimulation (tDCS) on pain, QoL, depression, anxiety and affectivity in ESRD patients undergoing hemodialysis (HD). METHODS: This double-blind, randomized, sham-controlled trial included 30 patients with chronic pain undergoing HD. Participants were allocated to Active tDCS and Sham tDCS and received ten non-consecutive sessions of anodal motor cortex stimulation (M1/Sp2 montage) at 2 mA intensity for 20 min. The primary outcome was pain assessed using numeric rating scale (NRS) and collected at baseline, immediately after the 10th day of intervention, one week, two weeks, and four weeks after the last stimulation. Secondary outcomes included QoL, depression, anxiety and affectivity collected before and after intervention. RESULTS: A mixed ANOVA model showed significant interaction between group and time on pain F(4.112) = 3.106, P = 0.01 with main effects of group (P = 0.03). Before and after intervention, a significant improvement was observed in QoL (P = 0.009), general health (P = 0.03), fatigue (P = 0.05), symptoms (P = 0.05) depression (P = 0.01) and anxiety (P = 0.01). No difference was found for affectivity. CONCLUSION: Anodal tDCS over the motor cortex emerges as a potential therapeutic approach for improving pain, QoL, and mood in patients with ESRD.
Asunto(s)
Dolor Crónico , Fallo Renal Crónico , Estimulación Transcraneal de Corriente Directa , Dolor Crónico/terapia , Método Doble Ciego , Humanos , Fallo Renal Crónico/terapia , Manejo del Dolor , Calidad de Vida , Resultado del TratamientoRESUMEN
Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called "conventional" tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg-1 min-1) were enrolled in this single-center, randomized, crossover, and sham-controlled trial. To test reliability, participants performed two time to exhaustion (TTE) tests (control conditions) on a cycle simulator with 80% of peak power until volitional exhaustion. Next, they randomly received HD-tDCS (2.4 mA), conventional (2.0 mA), or active sham tDCS (2.0 mA) over the motor cortex for 20-min before performing the TTE test. TTE, heart rate (HR), associative thoughts, peripheral (lower limbs), and whole-body ratings of perceived exertion (RPE) were recorded every minute. Outcome measures were reliable. There was no difference in TTE between HD-tDCS (853.1 ± 288.6 s), simulated conventional (827.8 ± 278.7 s), sham (794.3 ± 271.2 s), or control conditions (TTE1 = 751.1 ± 261.6 s or TTE2 = 770.8 ± 250.6 s) [F(1.95; 21.4) = 1.537; P = 0.24; η2p = 0.123]. There was no effect on peripheral or whole-body RPE and associative thoughts (P > 0.05). No serious adverse effect was reported. A single session of neither HD-tDCS nor conventional tDCS changed exercise performance and psychophysiological responses in athletes, suggesting that a ceiling effect may exist.
Asunto(s)
Atletas/psicología , Resistencia Física/fisiología , Psicofisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Evaluación de Resultado en la Atención de Salud , Consumo de Oxígeno/fisiología , Esfuerzo Físico/fisiología , Reproducibilidad de los Resultados , Sensación/fisiología , Adulto JovenRESUMEN
This study investigated the effect of transcranial direct current stimulation (tDCS) combined with a recovery training session on the well-being and self-perceived recovery of professional female soccer players after official matches. Data from 13 world-class players were analyzed after participating in four official soccer matches of the first division of the Brazilian Women's Soccer Championship (7-, 10-, and 13-day intervals). We applied anodal tDCS (a-tDCS) over the left dorsolateral prefrontal cortex with 2 mA for 20 minutes (+F3/-F4 montage) the day after each match. Participants underwent two randomly ordered sessions of a-tDCS or sham. Players completed the Well-Being Questionnaire (WBQ) and the Total Quality Recovery (TQR) scale before each experimental condition and again the following morning. A two-way repeated-measures ANOVA showed a significant time x condition interaction on the WBQ (F(1,11)=5.21; p=0.043; ηp2=0.32), but not on the TQR (F(1,12) = 0.552; p = 0.47; ηp2 = 0.044). There was a large effect size (ES) for a-tDCS for the WBQ score (ES = 1.02; 95%CI = 0.17;1.88), and there was a moderate WBQ score increase (ES = 0.53; 95%CI = -0.29;1.34) for the sham condition. We found similar increases in the TQR score for a-tDCS (ES = 1.50; 95%CI = 0.63-2.37) and the sham condition (ES = 1.36; 95%CI = 0.51-2.22). These results suggest that a-tDCS (+F3/-F4 montage) combined with a recovery training session may slightly improve perceived well-being beyond the level of improvement after only the recovery training session among world-class female soccer players. Prior to widely adopting this recovery approach, further study is needed with larger and more diverse samples, including for female teams of different performance levels.
Asunto(s)
Fútbol , Estimulación Transcraneal de Corriente Directa , Brasil , Femenino , Humanos , Corteza PrefrontalRESUMEN
Background: Clinical impact of transcranial direct current stimulation (tDCS) alone for Parkinson's disease (PD) is still a challenge. Thus, there is a need to synthesize available results, analyze methodologically and statistically, and provide evidence to guide tDCS in PD. Objective: Investigate isolated tDCS effect in different brain areas and number of stimulated targets on PD motor symptoms. Methods: A systematic review was carried out up to February 2021, in databases: Cochrane Library, EMBASE, PubMed/MEDLINE, Scopus, and Web of science. Full text articles evaluating effect of active tDCS (anodic or cathodic) vs. sham or control on motor symptoms of PD were included. Results: Ten studies (n = 236) were included in meta-analysis and 25 studies (n = 405) in qualitative synthesis. The most frequently stimulated targets were dorsolateral prefrontal cortex and primary motor cortex. No significant effect was found among single targets on motor outcomes: Unified Parkinson's Disease Rating Scale (UPDRS) III - motor aspects (MD = -0.98%, 95% CI = -10.03 to 8.07, p = 0.83, I 2 = 0%), UPDRS IV - dyskinesias (MD = -0.89%, CI 95% = -3.82 to 2.03, p = 0.55, I 2 = 0%) and motor fluctuations (MD = -0.67%, CI 95% = -2.45 to 1.11, p = 0.46, I 2 = 0%), timed up and go - gait (MD = 0.14%, CI 95% = -0.72 to 0.99, p = 0.75, I 2 = 0%), Berg Balance Scale - balance (MD = 0.73%, CI 95% = -1.01 to 2.47, p = 0.41, I 2 = 0%). There was no significant effect of single vs. multiple targets in: UPDRS III - motor aspects (MD = 2.05%, CI 95% = -1.96 to 6.06, p = 0.32, I 2 = 0%) and gait (SMD = -0.05%, 95% CI = -0.28 to 0.17, p = 0.64, I 2 = 0%). Simple univariate meta-regression analysis between treatment dosage and effect size revealed that number of sessions (estimate = -1.7, SE = 1.51, z-score = -1.18, p = 0.2, IC = -4.75 to 1.17) and cumulative time (estimate = -0.07, SE = 0.07, z-score = -0.99, p = 0.31, IC = -0.21 to 0.07) had no significant association. Conclusion: There was no significant tDCS alone short-term effect on motor function, balance, gait, dyskinesias or motor fluctuations in Parkinson's disease, regardless of brain area or targets stimulated.
RESUMEN
Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.
RESUMEN
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Asunto(s)
Atletas , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Voluntarios Sanos , Humanos , Aprendizaje , Corteza Motora/fisiopatología , Enfermedades del Sistema Nervioso/rehabilitación , Enfermedades del Sistema Nervioso/terapiaRESUMEN
Lattari, E, Vieira, LAF, Oliveira, BRR, Unal, G, Bikson, M, de Mello Pedreiro, RC, Marques Neto, SR, Machado, S, and Maranhão-Neto, GA. Effects of transcranial direct current stimulation with caffeine intake on muscular strength and perceived exertion. J Strength Cond Res 33(5): 1237-1243, 2019-The aim of this study was to investigate the acute effects of transcranial direct current stimulation (tDCS) associated with caffeine intake on muscular strength and ratings of perceived exertion (RPE). Fifteen healthy young males recreationally trained (age: 25.3 ± 3.2 years, body mass: 78.0 ± 6.9 kg, height: 174.1 ± 6.1 cm) were recruited. The experimental conditions started with the administration of caffeine (Caff) or placebo (Pla) 1 hour before starting the anodal tDCS (a-tDCS or sham). There was an intake of 5 mg·kg of Caff or 5 mg·kg of Pla. After the intake, a-tDCS or sham was applied in the left dorsolateral prefrontal cortex with intensity of 2 mA and 20 minutes of duration. The experimental conditions were defined as Sham + Pla, a-tDCS + Pla, Sham + Caff, and a-tDCS + Caff. After the conditions, muscular strength and RPE were verified. Muscular strength was determined by volume load performed in bench press exercise. Muscular strength in Sham + Pla condition was lower compared with all others conditions (p < 0.05). The RPE in the Sham + Pla was greater compared with a-tDCS + Caff (p < 0.05). Muscular strength was greater in all experimental conditions, and a-tDCS + Caff had lower RPE compared with placebo. When very little gains in muscle strength are expected, both caffeine and tDCS were effective in increasing muscle strength. Besides, the improvement in RPE of the caffeine associated with a-tDCS could prove advantageous in participants experienced in strength training. In fact, coaches and applied sport scientists quantitating the intensity of training based on RPE.
Asunto(s)
Cafeína/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Fuerza Muscular , Esfuerzo Físico , Estimulación Transcraneal de Corriente Directa , Adulto , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Masculino , Esfuerzo Físico/fisiología , Distribución Aleatoria , Entrenamiento de Fuerza , Levantamiento de Peso/fisiología , Adulto JovenRESUMEN
BACKGROUND: Transcranial direct current stimulation (tDCS) has been used to improve exercise performance, though the protocols used, and results found are mixed. OBJECTIVE: We aimed to analyze the effect of tDCS on improving exercise performance. METHODS: A systematic search was performed on the following databases, until December 2017: PubMed/MEDLINE, Embase, Web of Science, SCOPUS, and SportDiscus. Full-text articles that used tDCS for exercise performance improvement in adults were included. We compared the effect of anodal (anode near nominal target) and cathodal (cathode near nominal target) tDCS to a sham/control condition on the outcome measure (performance in isometric, isokinetic or dynamic strength exercise and whole-body exercise). RESULTS: 22 studies (393 participants) were included in the qualitative synthesis and 11 studies (236 participants) in the meta-analysis. The primary motor cortex (M1) was the main nominal tDCS target (nâ¯=â¯16; 72.5%). A significant effect favoring anodal tDCS (a-tDCS) applied before exercise over M1 was found on cycling time to exhaustion (mean differenceâ¯=â¯93.41â¯s; 95%CIâ¯=â¯27.39â¯s-159.43â¯s) but this result was strongly influenced by one study (weightâ¯=â¯84%), no effect was found for cathodal tDCS (c-tDCS). No significant effect was found for a-tDCS applied on M1 before or during exercise on isometric muscle strength of the upper or lower limbs. Studies regarding a-tDCS over M1 on isokinetic muscle strength presented mixed results. Individual results of studies using a-tDCS applied over the prefrontal and motor cortices either before or during dynamic muscle strength testing showed positive results, but performing meta-analysis was not possible. CONCLUSION: For the protocols tested, a-tDCS but not c-tDCS vs. sham over M1 improved exercise performance in cycling only. However, this result was driven by a single study, which when removed was no longer significant. Further well-controlled studies with larger sample sizes and broader exploration of the tDCS montages and doses are warranted.
Asunto(s)
Ejercicio Físico , Estimulación Transcraneal de Corriente Directa , Rendimiento Atlético , Humanos , Corteza Motora/fisiologíaRESUMEN
Background: Using conventional tDCS over the temporo-parietal junction (TPJ) we previously reported that it is possible to manipulate subjective visual vertical (SVV) and postural control. We also demonstrated that high-definition tDCS (HD-tDCS) can achieve substantially greater cortical stimulation focality than conventional tDCS. However, it is critical to establish dose-response effects using well-defined protocols with relevance to clinically meaningful applications. Objective: To conduct three pilot studies investigating polarity and intensity-dependent effects of HD-tDCS over the right TPJ on behavioral and physiological outcome measures in healthy subjects. We additionally aimed to establish the feasibility, safety, and tolerability of this stimulation protocol. Methods: We designed three separate randomized, double-blind, crossover phase I clinical trials in different cohorts of healthy adults using the same stimulation protocol. The primary outcome measure for trial 1 was SVV; trial 2, weight-bearing asymmetry (WBA); and trial 3, electroencephalography power spectral density (EEG-PSD). The HD-tDCS montage comprised a single central, and 3 surround electrodes (HD-tDCS3x1) over the right TPJ. For each study, we tested 3x2 min HD-tDCS3x1 at 1, 2 and 3 mA; with anode center, cathode center, or sham stimulation, in random order across days. Results: We found significant SVV deviation relative to baseline, specific to the cathode center condition, with consistent direction and increasing with stimulation intensity. We further showed significant WBA with direction governed by stimulation polarity (cathode center, left asymmetry; anode center, right asymmetry). EEG-PSD in the gamma band was significantly increased at 3 mA under the cathode. Conclusions: The present series of studies provide converging evidence for focal neuromodulation that can modify physiology and have behavioral consequences with clinical potential.
RESUMEN
The Chikungunya (CHIK) virus is epidemic in Brazil, with 170,000 cases in the first half of 2016. More than 60% of patients present relapsing and remitting chronic arthralgia with debilitating pain lasting years. There are no specific therapeutic agents to treat and rehabilitee infected persons with CHIK. Persistent pain can lead to incapacitation, requiring long-term pharmacological treatment. Advances in non-pharmacological treatments are necessary to promote pain relief without side effects and to restore functionality. Clinical trials indicate transcranial direct current stimulation (tDCS) can treat a broad range of chronic pain disorders, including diffuse neuromuscular pain and arthralgia. Here, we demonstrate that the tDCS across the primary motor cortex significantly reduces pain in the chronic phase of CHIK. High-resolution computational model was created to analyze the cortical electric field generated during tDCS and a diffuse and clustered brain current flow including M1 ipsilateral and contralateral, left DLPFC, nucleus accumbens, and cingulate was found. Our findings suggest tDCS could be an effective, inexpensive and deployable therapy to areas lacking resources with a significant number of patients with chronic CHIK persistent pain.
Asunto(s)
Artralgia/etiología , Artralgia/terapia , Fiebre Chikungunya/complicaciones , Manejo del Dolor , Adulto , Anciano , Artralgia/diagnóstico , Fiebre Chikungunya/virología , Dolor Crónico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Neurotransmisores/uso terapéutico , Manejo del Dolor/métodos , Dimensión del Dolor , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Resultado del TratamientoRESUMEN
CONTEXT AND OBJECTIVE: Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS) and sham, and analyze the results between these neuromodulation techniques; and secondly, through computational model on the cortex and surrounding tissues, to assess current flow distribution and responses among patients who received tDCS and presented different levels of results from naming tasks. DESIGN AND SETTING: Prospective, descriptive, qualitative and quantitative, double blind, randomized and placebo-controlled study conducted at Faculdade de Ciências Médicas da Santa Casa de São Paulo. METHODS: Patients with aphasia received one session of tDCS, TMS or sham stimulation. The time taken to name pictures and the response time were evaluated before and after neuromodulation. Selected patients from the first intervention underwent a computational model stimulation procedure that simulated tDCS. RESULTS: The results did not indicate any statistically significant differences from before to after the stimulation.The computational models showed different current flow distributions. CONCLUSIONS: The present study did not show any statistically significant difference between tDCS, TMS and sham stimulation regarding naming tasks. The patients'responses to the computational model showed different patterns of current distribution.
Asunto(s)
Afasia/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/complicaciones , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Adulto , Anciano , Afasia/etiología , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento , Adulto JovenRESUMEN
ABSTRACT CONTEXT AND OBJECTIVE: Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS) and sham, and analyze the results between these neuromodulation techniques; and secondly, through computational model on the cortex and surrounding tissues, to assess current flow distribution and responses among patients who received tDCS and presented different levels of results from naming tasks. DESIGN AND SETTING: Prospective, descriptive, qualitative and quantitative, double blind, randomized and placebo-controlled study conducted at Faculdade de Ciências Médicas da Santa Casa de São Paulo. METHODS: Patients with aphasia received one session of tDCS, TMS or sham stimulation. The time taken to name pictures and the response time were evaluated before and after neuromodulation. Selected patients from the first intervention underwent a computational model stimulation procedure that simulated tDCS. RESULTS: The results did not indicate any statistically significant differences from before to after the stimulation.The computational models showed different current flow distributions. CONCLUSIONS: The present study did not show any statistically significant difference between tDCS, TMS and sham stimulation regarding naming tasks. The patients'responses to the computational model showed different patterns of current distribution.