Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109489

RESUMEN

Leaf scald is a destructive sugarcane disease caused by the bacterium Xanthomonas albilineans (Ashby) Dowson. This pathogen presents the gene cluster SPI-1 T3SS, a conserved feature in pathogens vectored by animals. In this study, the competence of Mahanarva fimbriolata (Stål), a spittlebug commonly found in sugarcane fields in Brazil, was evaluated for the transmission of X. albilineans. Artificial probing assays were conducted to investigate the ability of M. fimbriolata adults to acquire X. albilineans from artificial diets containing the pathogen with subsequent inoculation of X. albilineans into pathogen-free diets. Plant probing assays with M. fimbriolata adults were conducted to evaluate the acquisition of X. albilineans from diseased source plants and subsequent inoculation of healthy recipient sugarcane plants. The presence of X. albilineans DNA in saliva/diet mixtures of the artificial probing assays and both insects and plants of the plant probing assays were checked using TaqMan assays. The artificial probing assays showed that M. fimbriolata adults were able to acquire and inoculate X. albilineans in diets. Plant probing assays confirmed the competence of M. fimbriolata to transmit X. albilineans to sugarcane. Over the entire experiment, 42% of the insects had acquired the pathogen and successful inoculation of the pathogen occurred in 18% of the recipient-susceptible sugarcane plants at 72 or 96 h of inoculation access period. Assays evidenced the vector competence of M. fimbriolata for transmission of X. albilineans, opening new pathways for investigating the biology and the economic impacts of the interaction between X. albilineans and M. fimbriolata.


Asunto(s)
Hemípteros , Saccharum , Xanthomonas , Animales , Saccharum/microbiología , Xanthomonas/genética , Brasil , Hojas de la Planta , Insectos Vectores
2.
Plant Physiol Biochem ; 203: 108033, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37757720

RESUMEN

Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X. albilineans using molecular and biochemical approaches to assess pathogen-triggered ROS, phytohormones and metabolomics in two contrasting sugarcane genotypes from 0.5 to 144 h post-inoculation (hpi). In addition, the infection process was monitored using TaqMan-based quantification of X. albilineans and the disease symptoms were evaluated in both genotypes after 15 d post-inoculation (dpi). The susceptible genotype presented a response to the infection at 0.5 hpi, accumulating defense-related metabolites such as phenolics and flavonoids with no significant defense responses thereafter, resulting in typical symptoms of leaf scald at 15 dpi. The resistant genotype did not respond to the infection at 0.5 hpi but constitutively presented higher levels of salicylic acid and of the same metabolites induced by the infection in the susceptible genotype. Moreover, two subsequent pathogen-induced metabolic responses at 12 and 144 hpi were observed only in the resistant genotype in terms of amino acids, quinic acids, coumarins, polyamines, flavonoids, phenolics and phenylpropanoids together with an increase of hydrogen peroxide, ROS-related genes expression, indole-3-acetic-acid and salicylic acid. Multilevel approaches revealed that constitutive chemical composition and metabolic reprogramming hampers the development of leaf scald at 48 and 72 hpi, reducing the disease symptoms in the resistant genotype at 15 dpi. Phenylpropanoid pathway is suggested as a strong candidate marker for breeding sugarcane resistant to leaf scald.

3.
Front Plant Sci ; 9: 1978, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687371

RESUMEN

Austropuccinia psidii, the causal agent of myrtle rust, is a biotrophic pathogen whose growth and development depends on the host tissues. The uredospores of A. psidii infect Eucalyptus by engaging in close contact with the host surface and interacting with the leaf cuticle that provides important chemical and physical signals to trigger the infection process. In this study, the cuticular waxes of Eucalyptus spp. were analyzed to determine their composition or structure and correlation with susceptibility/resistance to A. psidii. Twenty-one Eucalyptus spp. in the field were classified as resistant or susceptible. The resistance/susceptibility level of six Eucalyptus spp. were validated in controlled conditions using qPCR, revealing that the pathogen can germinate on the eucalyptus surface of some species without multiplying in the host. CG-TOF-MS analysis detected 26 compounds in the Eucalyptus spp. cuticle and led to the discovery of the role of hexadecanoic acid in the susceptibility of Eucalyptus grandis and Eucalyptus phaeotricha to A. psidii. We characterized the epicuticular wax morphology of the six previously selected Eucalyptus spp. using scanning electron microscopy and observed different behavior in A. psidii germination during host infection. It was found a correlation of epicuticular morphology on the resistance to A. psidii. However, in this study, we provide the first report of considerable interspecific variation in Eucalyptus spp. on the susceptibility to A. psidii and its correlation with cuticular waxes chemical compounds that seem to play a synergistic role as a preformed defense mechanism.

4.
PLoS One ; 11(1): e0145343, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26731728

RESUMEN

Puccinia psidii sensu lato (s.l.) is the causal agent of eucalyptus and guava rust, but it also attacks a wide range of plant species from the myrtle family, resulting in a significant genetic and physiological variability among populations accessed from different hosts. The uredospores are crucial to P. psidii dissemination in the field. Although they are important for the fungal pathogenesis, their molecular characterization has been poorly studied. In this work, we report the first in-depth proteomic analysis of P. psidii s.l. uredospores from two contrasting populations: guava fruits (PpGuava) and eucalyptus leaves (PpEucalyptus). NanoUPLC-MSE was used to generate peptide spectra that were matched to the UniProt Puccinia genera sequences (UniProt database) resulting in the first proteomic analysis of the phytopathogenic fungus P. psidii. Three hundred and fourty proteins were detected and quantified using Label free proteomics. A significant number of unique proteins were found for each sample, others were significantly more or less abundant, according to the fungal populations. In PpGuava population, many proteins correlated with fungal virulence, such as malate dehydrogenase, proteossomes subunits, enolases and others were increased. On the other hand, PpEucalyptus proteins involved in biogenesis, protein folding and translocation were increased, supporting the physiological variability of the fungal populations according to their protein reservoirs and specific host interaction strategies.


Asunto(s)
Basidiomycota/metabolismo , Basidiomycota/patogenicidad , Eucalyptus/microbiología , Proteómica/métodos , Psidium/microbiología , Esporas Fúngicas/metabolismo , Basidiomycota/clasificación , Cromatografía Liquida/métodos , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/metabolismo , Especificidad del Huésped , Espectrometría de Masas/métodos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Proteoma/clasificación , Proteoma/metabolismo , Especificidad de la Especie , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA