Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 598(17): 3645-3666, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32613634

RESUMEN

KEY POINTS: Vascular function and arterial stiffness are important markers of cardiovascular health and cardiovascular co-morbidity. Transitional phases of hypoemia and hypermia, with consequent fluctuations in shear rate, occuring during repetitive passive stretching adminstration (passive stretching training) may constitute an effective stimulus to induce an amelioration in vascular function, arterial stiffness and vascular remodelling by improving central and local blood flow control mechanisms. Vascular function, arterial stiffness and vascular remodelling were evaluated before and after 12 weeks of passive stretching training and after 6 weeks from training cessation, in the femoral, popliteal (treated with stretching), and brachial arteries (untreated) of both sides. After passive stretching training, vascular function and arterial remodelling improved, and arterial stiffness decreased in all the arteries, suggesting modifications of both central and local blood flow control mechanisms. Passive stretching-induced improvements related to central mechanisms seemed to have a short duration, as they returned to pre-training baseline within 6 weeks from training cessation, whereas those more related to a local mechanism persisted in the follow-up. ABSTRACT: Acute passive stretching (PS) effects on blood flow ( Q̇ ), shear rate ( Ẏ ), and vascular function in the feeding arteries of the stretched muscle have been extensively investigated; however, few data are available on vascular adjustments induced by long-term PS training. We investigated the effects of PS training on vascular function and stiffness of the involved (femoral and popliteal) and uninvolved (brachial) arteries. Our hypothesis was that PS-induced changes in Q̇ and Ẏ would improve central and local mechanisms of Q̇ control. Thirty-nine participants were randomly assigned to bilateral PS (n = 14), monolateral PS (n = 13) or no PS training (n = 12). Vascular function was measured before and after 12 weeks of knee extensor and plantar flexor muscles' PS training by single passive limb movement and flow-mediated dilatation (FMD). Central (carotid-femoral artery PWV, PWVCF ) and peripheral (carotid-radial artery PWV, PWVCR ) arterial stiffness was measured by pulse-wave velocity (PWV), together with systolic (SBP) and diastolic (DBP) blood pressure. After PS training, increases of 30%, 25% and 8% (P < 0.05) in femoral Δ Q̇ , popliteal and brachial artery FMD%, respectively, occurred in both PS training groups. A decrease in PWVCF , PWVCR , SBP and DBP (-25%, -17%, -4% and -8%, respectively; P < 0.05) was noted. No changes occurred in controls. Vascular function improved and arterial stiffness reduced in the arteries involved and uninvolved with PS training, suggesting modifications in both central and local Q̇ control mechanisms. PS-induced improvements had a short duration in some of vascular function parameters, as they returned to baseline within 6 weeks of PS training cessation.


Asunto(s)
Ejercicios de Estiramiento Muscular , Sistema Musculoesquelético , Rigidez Vascular , Arteria Braquial , Humanos , Análisis de la Onda del Pulso
2.
Eur J Appl Physiol ; 120(7): 1629-1636, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32494861

RESUMEN

PURPOSE: The Wingate anaerobic test measures the maximum anaerobic capacity of the lower limbs. The energy sources of Wingate test are dominated by anaerobic metabolism (~ 80%). Chronic high altitude exposure induces adaptations on skeletal muscle function and metabolism. Therefore, the study aim was to investigate possible changes in the energy system contribution to Wingate test before and after a high-altitude sojourn. METHODS: Seven male climbers performed a Wingate test before and after a 43-day expedition in the Himalaya (23 days above 5.000 m). Mechanical parameters included: peak power (PP), average power (AP), minimum power (MP) and fatigue index (FI). The metabolic equivalents were calculated as aerobic contribution from O2 uptake during the 30-s exercise phase (WVO2), lactic and alactic anaerobic energy sources were determined from net lactate production (WLa) and the fast component of the kinetics of post-exercise oxygen uptake (WPCr), respectively. The total metabolic work (WTOT) was calculated as the sum of the three energy sources. RESULTS: PP and AP decreased from 7.3 ± 1.1 to 6.7 ± 1.1 W/kg and from 5.9 ± 0.7 to 5.4 ± 0.8 W/kg, respectively, while FI was unchanged. WTOT declined from 103.9 ± 28.7 to 83.8 ± 17.8 kJ. Relative aerobic contribution remained unchanged (19.9 ± 4.8% vs 18.3 ± 2.3%), while anaerobic lactic and alactic contributions decreased from 48.3 ± 11.7 to 43.1 ± 8.9% and increased from 31.8 ± 14.5 to 38.6 ± 7.4%, respectively. CONCLUSION: Chronic high altitude exposure induced a reduction in both mechanical and metabolic parameters of Wingate test. The anaerobic alactic relative contribution increased while the anaerobic lactic decreased, leaving unaffected the overall relative anaerobic contribution to Wingate test.


Asunto(s)
Altitud , Umbral Anaerobio/fisiología , Metabolismo Energético/fisiología , Resistencia Física/fisiología , Adaptación Fisiológica/fisiología , Adulto , Ejercicio Físico/fisiología , Expediciones , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA