Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech ; 171: 112190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38897049

RESUMEN

Biological tissues decay over time after harvesting, which alters their biomechanical properties. This poses logistical challenges for studies investigating passive arterial biomechanics as tissues need to be characterized shortly after excision. Freezing and cryopreservation methods can help alleviate the need for biomechanical testing of fresh tissue in human ex vivo studies. However, these methods tend to eliminate or reduce arterial cell functionality and affect passive biomechanics. Furthermore, their impact on dynamic arterial biomechanics remains unknown despite arterial viscoelastic properties being an integral component contributing to arterial stiffness under in vivo loading conditions. The present study aims to investigate the impact of rapid cooling and subsequent storage at -80 °C on the passive viscoelastic properties of arterial tissue and aid in ascertaining whether this is a suitable method to delay tissue analysis for studies investigating passive arterial biomechanics. Control and frozen abdominal rat aorta segments were quasi-statically and dynamically tested using a biaxial testing set-up. The results were modeled using a constituent-based quasi-linear viscoelastic modeling framework, yielding directional stiffness parameters, individual constituent biomechanical contributions, and a quantification of viscoelastic stiffening under dynamic pressurization conditions. Frozen samples displayed significantly decreased wall thickness, viscoelastic dissipation, viscoelastic stiffening, and significantly decreased circumferential deformation with changes in luminal pressure. Furthermore, frozen samples displayed significantly increased circumferential stiffness, pulse wave velocity, and collagen load bearing. Consequently, these changes should be considered when utilizing this tissue preservation method to delay biomechanical characterization of rat aortic tissue.


Asunto(s)
Criopreservación , Elasticidad , Animales , Ratas , Criopreservación/métodos , Viscosidad , Masculino , Ratas Sprague-Dawley , Congelación , Fenómenos Biomecánicos , Aorta/fisiología , Rigidez Vascular/fisiología , Aorta Abdominal/fisiología
2.
Nano Lett ; 7(1): 93-100, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17212446

RESUMEN

A quantum-dot-based nanoparticle is presented, allowing visualization of cell death and activated platelets with fluorescence imaging and MRI. The particle exhibits intense fluorescence and a large MR relaxivity (r1) of 3000-4500 mM-1 s-1 per nanoparticle due to a newly designed construct increasing the gadolinium-DTPA load. The nanoparticle is suitable for both anatomic and subcellular imaging of structures in the vessel wall and is a promising bimodal contrast agent for future in vivo imaging studies.


Asunto(s)
Anexina A5/química , Muerte Celular , Imagen por Resonancia Magnética/métodos , Activación Plaquetaria , Teoría Cuántica , Microscopía por Crioelectrón , Gadolinio DTPA , Nanopartículas , Óptica y Fotónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...