Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 605, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769398

RESUMEN

Alzheimer's disease (AD) is broadly characterized by neurodegeneration, pathology accumulation, and cognitive decline. There is considerable variation in the progression of clinical symptoms and pathology in humans, highlighting the importance of genetic diversity in the study of AD. To address this, we analyze cell composition and amyloid-beta deposition of 6- and 14-month-old AD-BXD mouse brains. We utilize the analytical QUINT workflow- a suite of software designed to support atlas-based quantification, which we expand to deliver a highly effective method for registering and quantifying cell and pathology changes in diverse disease models. In applying the expanded QUINT workflow, we quantify near-global age-related increases in microglia, astrocytes, and amyloid-beta, and we identify strain-specific regional variation in neuron load. To understand how individual differences in cell composition affect the interpretation of bulk gene expression in AD, we combine hippocampal immunohistochemistry analyses with bulk RNA-sequencing data. This approach allows us to categorize genes whose expression changes in response to AD in a cell and/or pathology load-dependent manner. Ultimately, our study demonstrates the use of the QUINT workflow to standardize the quantification of immunohistochemistry data in diverse mice, - providing valuable insights into regional variation in cellular load and amyloid deposition in the AD-BXD model.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Modelos Animales de Enfermedad , Variación Genética , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Masculino
2.
Front Neuroinform ; 18: 1284107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421771

RESUMEN

Neuroscientists employ a range of methods and generate increasing amounts of data describing brain structure and function. The anatomical locations from which observations or measurements originate represent a common context for data interpretation, and a starting point for identifying data of interest. However, the multimodality and abundance of brain data pose a challenge for efforts to organize, integrate, and analyze data based on anatomical locations. While structured metadata allow faceted data queries, different types of data are not easily represented in a standardized and machine-readable way that allow comparison, analysis, and queries related to anatomical relevance. To this end, three-dimensional (3D) digital brain atlases provide frameworks in which disparate multimodal and multilevel neuroscience data can be spatially represented. We propose to represent the locations of different neuroscience data as geometric objects in 3D brain atlases. Such geometric objects can be specified in a standardized file format and stored as location metadata for use with different computational tools. We here present the Locare workflow developed for defining the anatomical location of data elements from rodent brains as geometric objects. We demonstrate how the workflow can be used to define geometric objects representing multimodal and multilevel experimental neuroscience in rat or mouse brain atlases. We further propose a collection of JSON schemas (LocareJSON) for specifying geometric objects by atlas coordinates, suitable as a starting point for co-visualization of different data in an anatomical context and for enabling spatial data queries.

3.
Nat Methods ; 20(11): 1822-1829, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783883

RESUMEN

Volumetric brain atlases are increasingly used to integrate and analyze diverse experimental neuroscience data acquired from animal models, but until recently a publicly available digital atlas with complete coverage of the rat brain has been missing. Here we present an update of the Waxholm Space rat brain atlas, a comprehensive open-access volumetric atlas resource. This brain atlas features annotations of 222 structures, of which 112 are new and 57 revised compared to previous versions. It provides a detailed map of the cerebral cortex, hippocampal region, striatopallidal areas, midbrain dopaminergic system, thalamic cell groups, the auditory system and main fiber tracts. We document the criteria underlying the annotations and demonstrate how the atlas with related tools and workflows can be used to support interpretation, integration, analysis and dissemination of experimental rat brain data.


Asunto(s)
Mapeo Encefálico , Encéfalo , Ratas , Animales , Corteza Cerebral , Dopamina , Análisis de Datos , Imagen por Resonancia Magnética
4.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669867

RESUMEN

As the European Flagship Human Brain Project (HBP) ends in September 2023, a meeting dedicated to the Partnering Projects (PPs), a collective of independent research groups that partnered with the HBP, was held on September 4-7, 2022. The purpose of this meeting was to allow these groups to present their results, reflect on their collaboration with the HBP and discuss future interactions with the European Research Infrastructure (RI) EBRAINS that has emerged from the HBP. In this report, we share the tour-de-force that the Partnering Projects that were present in the meeting have made in furthering knowledge concerning various aspects of Brain Research with the HBP. We describe briefly major achievements of the HBP Partnering Projects in terms of a systems-level understanding of the functional architecture of the brain and its possible emulation in artificial systems. We then recapitulate open discussions with EBRAINS representatives about the evolution of EBRAINS as a sustainable Research Infrastructure for the Partnering Projects after the HBP, and also for the wider scientific community.


Asunto(s)
Encéfalo , Humanos , Neurociencias , Congresos como Asunto , Investigación Biomédica
5.
Nat Commun ; 14(1): 5884, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735467

RESUMEN

Registration of data to a common frame of reference is an essential step in the analysis and integration of diverse neuroscientific data. To this end, volumetric brain atlases enable histological datasets to be spatially registered and analyzed, yet accurate registration remains expertise-dependent and slow. In order to address this limitation, we have trained a neural network, DeepSlice, to register mouse brain histological images to the Allen Brain Common Coordinate Framework, retaining registration accuracy while improving speed by >1000 fold.


Asunto(s)
Ascomicetos , Animales , Ratones , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Sistemas de Lectura , Neuroimagen
6.
iScience ; 26(9): 107562, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636060

RESUMEN

Quantifying how the cellular composition of brain regions vary across development, aging, sex, and disease, is crucial in experimental neuroscience, and the accuracy of different counting methods is continuously debated. Due to the tedious nature of most counting procedures, studies are often restricted to one or a few brain regions. Recently, there have been considerable methodological advances in combining semi-automated feature extraction with brain atlases for cell quantification. Such methods hold great promise for scaling up cell-counting efforts. However, little focus has been paid to how these methods should be implemented and reported to support reproducibility. Here, we provide an overview of practices for conducting and reporting cell counting in mouse and rat brains, showing that critical details for interpretation are typically lacking. We go on to discuss how novel methods may increase efficiency and reproducibility of cell counting studies. Lastly, we provide practical recommendations for researchers planning cell counting.

7.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909528

RESUMEN

Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.

8.
Front Neuroinform ; 17: 1154080, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970659

RESUMEN

Brain atlases are widely used in neuroscience as resources for conducting experimental studies, and for integrating, analyzing, and reporting data from animal models. A variety of atlases are available, and it may be challenging to find the optimal atlas for a given purpose and to perform efficient atlas-based data analyses. Comparing findings reported using different atlases is also not trivial, and represents a barrier to reproducible science. With this perspective article, we provide a guide to how mouse and rat brain atlases can be used for analyzing and reporting data in accordance with the FAIR principles that advocate for data to be findable, accessible, interoperable, and re-usable. We first introduce how atlases can be interpreted and used for navigating to brain locations, before discussing how they can be used for different analytic purposes, including spatial registration and data visualization. We provide guidance on how neuroscientists can compare data mapped to different atlases and ensure transparent reporting of findings. Finally, we summarize key considerations when choosing an atlas and give an outlook on the relevance of increased uptake of atlas-based tools and workflows for FAIR data sharing.

9.
iScience ; 24(1): 101906, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33385111

RESUMEN

The calcium-binding proteins parvalbumin and calbindin are expressed in neuronal populations regulating brain networks involved in spatial navigation, memory processes, and social interactions. Information about the numbers of these neurons across brain regions is required to understand their functional roles but is scarcely available. Employing semi-automated image analysis, we performed brain-wide analysis of immunohistochemically stained parvalbumin and calbindin sections and show that these neurons distribute in complementary patterns across the mouse brain. Parvalbumin neurons dominate in areas related to sensorimotor processing and navigation, whereas calbindin neurons prevail in regions reflecting behavioral states. We also find that parvalbumin neurons distribute according to similar principles in the hippocampal region of the rat and mouse brain. We validated our results against manual counts and evaluated variability of results among researchers. Comparison of our results to previous reports showed that neuron numbers vary, whereas patterns of relative densities and numbers are consistent.

10.
Sci Data ; 7(1): 211, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632099

RESUMEN

Quantitative measurements and descriptive statistics of different cellular elements in the brain are typically published in journal articles as text, tables, and example figures, and represent an important basis for the creation of biologically constrained computational models, design of intervention studies, and comparison of subject groups. Such data can be challenging to extract from publications and difficult to normalise and compare across studies, and few studies have so far attempted to integrate quantitative information available in journal articles. We here present a database of quantitative information about cellular parameters in the frequently studied murine basal ganglia. The database holds a curated and normalised selection of currently available data collected from the literature and public repositories, providing the most comprehensive collection of quantitative neuroanatomical data from the basal ganglia to date. The database is shared as a downloadable resource from the EBRAINS Knowledge Graph (https://kg.ebrains.eu), together with a workflow that allows interested researchers to update and expand the database with data from future reports.


Asunto(s)
Ganglios Basales/citología , Bases de Datos Factuales , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA